Bài tập  /  Bài đang cần trả lời

Chứng minh rằng: Tổng khoảng cách từ một điểm bất kì trong tam giác đều đến 3 cạnh của một tam giác không phụ thuộc vào vị trí điểm đó trong tam giác

Bài 1: Chứng minh rằng: Tổng khoảng cách từ một điểm bất kì trong tam giác đều đến 3 cạnh của một tam giác không phụ thuộc vào vị trí điểm đó trong tam giác
Bài 2: Cho tam giác ABC, điểm M trong tam giác sao cho S tam giác AMB + S tam giác BMC= S tam giác MAC di chuyển trên đường nào?(a)
b) Các điểm I sao cho S AIC = S tam giác ABC di chuyển trên đường nào?
c) Các điểm O sao cho S ADC=2S ABC di chuyển trên đường nào?
Bài 3: Trong các hình chữ nhật có cùng S=100cm^2. Hình nào có chu vi nhỏ nhất
2 trả lời
Hỏi chi tiết
5.232
5
4
Tăng Thị Kiều
24/12/2017 22:57:06
Giả sử ∆ABC cân tại A, M là điểm thuộc cạnh đáy BC, ta chứng minh AM ≤ AB;
AM ≤ AC
+ Nếu M ≡ A hoặc M ≡ B ( Kí hiệu đọc là trùng với) thì AM = AB, AM = AC.
+ Nếu M nằm giữa B và C; ( M ≢ B , C). Gọi H là trung điểm của BC, mà ∆ABC cân tại A nên AH ⊥ BC
+ Nếu M ≡ H => AM ⊥ BC => AM < AB và AM < AC
+ Nếu M ≢ K giả sử M nằm giữa H và C=> MH < CH
Vì MN và CH là hình chiếu MA và CA trên đường BC nên MA < CA => MA < BA
Chứng minh tương tự nếu M nằm giữa H và B thì MA < AB, MA < AC
Vậy mọi giá trị của M trên cạnh đáy BC thì AM ≤ AB, AM ≤ AC

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
3
0
Tăng Thị Kiều
24/12/2017 22:58:31

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư