LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho nửa đường tròn (O; R) có đường kính AB. Vẽ các tiếp tuyến Ax, By của đường tròn (O), trên đường tròn (O) lấy một điểm E bất kì (E khác A, B). Tiếp tuyến tại E của đường tròn (O) cắt Ax, By lần lượt tại C, D. a) Chứng minh: CD = AC + BD. b) Vẽ EF vuông góc AB tại F, BE cắt AC tại K. Chứng minh: AF.AB = KE.EB. c) EF cắt CB tại I. Chứng minh , suy ra FE là tia phân giác của góc CFD. d) EA cắt CF tại M, EB cắt DF tại N. Chứng minh: M, I, N thẳng hàng.

Cho nửa đường tròn (O; R) có đường kính AB. Vẽ các tiếp tuyến Ax, By của đường tròn (O), trên đường tròn (O) lấy một điểm E bất kì (E khác A, B). Tiếp tuyến tại E của đường tròn (O) cắt Ax, By lần lượt tại C, D.

a) Chứng minh: CD = AC + BD.

b) Vẽ EF vuông góc AB tại F, BE cắt AC tại K. Chứng minh: AF.AB = KE.EB.

c) EF cắt CB tại I. Chứng minh , suy ra FE là tia phân giác của góc CFD.

d) EA cắt CF tại M, EB cắt DF tại N. Chứng minh: M, I, N thẳng hàng.

1 trả lời
Hỏi chi tiết
13
0
0

Lời giải:

a) Do AC, EC là hai tiếp tuyến của (O) cắt nhau tại C nên AC = EC.

          BD, ED là hai tiếp tuyến của (O) cắt nhau tại D nên BD = BE

Do đó AC + BD = EC + BE = CD.

Vậy CD = AC ++ BD.

b) Do E thuộc đường tròn (O) đường kính AB nên \(\widehat {AEB} = 90^\circ \)

DABK vuông tại A, có đường cao AE nên theo hệ thức lượng ta có: AE2 = KE.EB.

DAEB vuông tại E, có đường cao EF nên theo hệ thức lượng ta có: AE2 = AF.AB.

Do đó AF.AB = KE.EB.

c) Xét DABC có AC // IF nên theo định lí Talet ta có:\(\frac = \frac\).

Xét DBCD có IE // BD nên theo định lí Talet ta có:\(\frac = \frac\).

Lại có CE = AC và ED = BD nên \(\frac = \frac = \frac = \frac\) hay \(\frac = \frac\)

Xét \(\Delta AFC\) và \(\Delta BFD\) có:

\(\widehat {CAF} = \widehat {DBF} = 90^\circ \) và \(\frac = \frac\)

Do đó

\( \Rightarrow \widehat {AFC} = \widehat {BFD}\) (hai góc tương ứng)

Mà \(\widehat {AFC} + \widehat {CFE} = 90^\circ \) và \(\widehat {BFD} + \widehat {DFE} = 90^\circ \)

Suy ra \(\widehat {CFE} = \widehat {DFE}\) hay FE là phân giác của \(\widehat {CFD}\).

d) Ta có: AC = EC và OA = OE nên OC là đường trung trực của AE.

Lại có AE ⊥ KB nên OC // KB.

Mà O là trung điểm của AB nên C là trung điểm của AK.

Do EF // AK nên \(\frac = \frac = \frac\) (hệ quả định lí Talet)

Mà KC = CA nên EI = IF.

• Tia IM cắt AC tại Q, tia IB cắt BD tại Q.

CP // IF nên \(\frac = \frac\) (hệ quả định lí Talet)

PA // IE nên \(\frac = \frac\) (hệ quả định lí Talet)

Suy ra \(\frac = \frac\left( { = \frac} \right)\), mà EI = IF nên CP = PA hay P là trung điểm của AC.

Tương tự ta cũng chứng minh được Q là trung điểm của BD.

Ta có: IE // BD nên \(\frac = \frac = \frac = \frac = \frac\) và \(\widehat {PCI} = \widehat {QBI}\) (so le trong).

Xét DPCI và DQBI có:

\(\widehat {PCI} = \widehat {QBI}\) và \(\frac = \frac\)

Suy ra

Do đó \(\widehat {PIC} = \widehat {QIB}\) (hai góc tương ứng)

Mà \(\widehat {PIC} + \widehat {PIB} = 180^\circ \) (kề bù) nên \(\widehat {QIB} + \widehat {PIB} = 180^\circ \)

Suy ra P, I, Q thẳng hàng hay M, I, N thẳng hàng.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư