Bài tập  /  Bài đang cần trả lời

Cho đường tròn (O; R), đường kính BC cố định và điểm A cố định thuộc đoạn thẳng OB (A không trùng với O và B). Kẻ dây PQ ⊥ BC tại A. Lấy M thuộc cung lớn PQ (M không trùng với C). Nối BM cắt PQ tại E. Chứng minh: a. Tứ giác AEMC nội tiếp b. BP2 = BE. BM = BA.BC c. Từ E kẻ đường thẳng song song BC cắt PC tại I. Chứng minh: và tâm đường tròn ngoại tiếp tam giác EPM nằm trên một đường thẳng cố định khi M di chuyển trên cung lớn PQ.

Cho đường tròn (O; R), đường kính BC cố định và điểm A cố định thuộc đoạn thẳng OB (A không trùng với O và B). Kẻ dây PQ ⊥ BC tại A. Lấy M thuộc cung lớn PQ (M không trùng với C). Nối BM cắt PQ tại E. Chứng minh:

a. Tứ giác AEMC nội tiếp

b. BP2 = BE. BM = BA.BC

c. Từ E kẻ đường thẳng song song BC cắt PC tại I. Chứng minh: và tâm đường tròn ngoại tiếp tam giác EPM nằm trên một đường thẳng cố định khi M di chuyển trên cung lớn PQ.

1 trả lời
Hỏi chi tiết
7
0
0
Phạm Văn Bắc
11/09 12:23:17

a. EAC^ = 90° (EA vuông góc AC)

EMC^= 90° (Góc nội tiếp chắn nửa đường tròn)

Xét tứ giác ABOC có EAC^ + EMC^ = 90° + 90° = 180°

Suy ra tứ giác AEMC nội tiếp (đpcm).

b. Xét ∆ BAP và ∆ BPC có:

PBC^là góc chung

BPC^=BAC^= 90° (  là góc nội tiếp chắn nửa đường tròn)

Suy ra ∆ BAP  ∆ BPC (g.g)

Từ đó suy ra BABP=BPBC⇔BP2=BA.BC (1)

Xét ∆ BEA và ∆ BCM có:

MBC^ là góc chung

 BEA^=BCM^(tứ giác AEMC nội tiếp)

Suy ra ∆ BEA đồng dạng ∆ BCM (g.g)

Từ đó suy ra BEBC=BABM⇔BE.BM=BA.BC (2)

Từ (1) và (2) suy ra: BP2 = BE. BM = BA.BC (đpcm)

c. Ta có:

EMI^=MBC^(hai góc đồng vị).

MPC^=MBC^(tứ giác PMCB nội tiếp đường tròn O).

Suy ra MEI^=MPC^  .

Tứ giác EPMI có MEI^=MPI^ suy ra tứ giác EPMI nội tiếp.

Ta có: PA⊥BCBC//EI}⇒PA⊥EI⇒PEI^ = 90°

Ta có tâm đường tròn ngoại tiếp tam giác EPM cũng là tâm của đường tròn ngoại tiếp tứ giác EPMI.

Mà ta có PEI^ = 90° dẫn đến PI là đường kính .

Suy ra tâm của đường tròn ngoại tiếp tam giác EPM là trung điểm của PI.

Mà điểm này cũng thuộc đường thẳng PC với P và C cố định nên ta suy ra điều phải chứng minh.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 9 mới nhất
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư