Cho hàm số y = f(x) có đồ thị như hình vẽ. Phương trình f[f(cos x) − 1] = 0 có bao nhiêu nghiệm trên đoạn [0;2π]?
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Đặt t = cos x vì x ∈ [0; 2π] Þ t ∈ [−1; 1]
Đặt f(t) – 1 = vPhương trình f(f(cos x) – 1) = 0 có dạng: f(v) = 0 (*)
Số nghiệm của phương trình (*) là số giao điểm của hai đồ thị y = f(v) và đường thẳng y = 0
Từ đồ thị suy ra số nghiệm của phương trình (*) là
\[\left[ \begin{array}{l}v = {a_1} \in ( - 2; - 1)\\v = {a_2} \in ( - 1;0)\\v = {a_3} \in (1;2)\end{array} \right.\]
Thay vào phần đặt ta có \[\left[ \begin{array}{l}f(t) - 1 = {a_1} \in ( - 2; - 1)\\f(t) - 1 = {a_2} \in ( - 1;0)\\f(t) - 1 = {a_3} \in (1;2)\end{array} \right.\]
Xét phương trình: f(t) – 1 = a1 ∈ (−2; −1)
⇔ f(t) = (1 + a1) ∈ (−1; 0)
Đồ thị hàm số y = f(t) và đường thẳng y = 0 cắt nhau tại 3 điểm, chỉ có 1 điểm thỏa mãn có hành độ t ∈ (−1;0)
Nên phương trình f(t) – 1 = t1 ∈ (−2; −1) có 1 nghiệm t ∈ (−1; 0)
Xét phương trình: t = cos x với t ∈ (−1; 0).
Từ đồ thị hàm số:
y = cos x, x ∈ [0; 2π]
Þ t = cos x với t ∈ (−1; 0) có 2 nghiệm x
Tương tự phương trình:
f(t) – 1 = a2 ∈ (−1; 0)
⇔ f(t) = (1 + a2) ∈ (0; 1) có một nghiệm t ∈ (−1; 0)
Þ t = cos x với t ∈ (−1; 0) có 2 nghiệm x
f(t) – 1 = a3 ∈ (1; 2)
⇔ f(t) = (1 + a3) ∈ (2; 3) không có nghiệm t ∈ [−1; 1]
Vậy f(f(cos x) – 1) = 0 có 4 nghiệm trên đoạn [0; 2π].
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |