Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) \(y = \frac{{{x^2} - 4x + 8}};\)
b) \(y = \frac{{2{x^2} + 3x - 5}}.\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) \(y = \frac{{{x^2} - 4x + 8}}\)
1. Tập xác định: D = ℝ\{2}.
2. Sự biến thiên
Ta có: y = x – 2 + \(\frac{4}\).
Giới hạn tại vô cực:
\(\mathop {\lim }\limits_{x \to - \infty } y = - \infty ;\) \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty \).
Do đó, đồ thị hàm số không có tiệm cận ngang.
\(\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} - 4x + 8}} = + \infty \); \(\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} - 4x + 8}} = - \infty \).
Do đó, đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - (x - 2)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {x--2 + \frac{4} - (x - 2)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{4} = 0.\)
Do đó, đường thẳng y = x – 2 là đường tiệm cận xiên của đồ thị hàm số.
Ta có: y' =\(\frac{{{x^2} - 4x}}{{{{\left( {x - 2} \right)}^2}}}\)
y' = 0 ⇔ \(\frac{{{x^2} - 4x}}{{{{\left( {x - 2} \right)}^2}}}\)= 0 ⇔ x = 0 hoặc x = 4.
Hàm số đồng biến trên các khoảng (−∞; 0) và (4; +∞).
Hàm số nghịch biến trên các khoảng (0; 2) và (2; 4).
Hàm số đạt cực đại tại x = 0 và yCĐ = −4.
Hàm số đạt cực tiểu tại x = 4 và yCT = 4.
3. Đồ thị hàm số
Đồ thị hàm số cắt trục tung tại điểm (0; −4).
Đồ thị hàm số không cắt trục hoành.
Tâm đối xứng của đồ thị hàm số là điểm (2; 0).
Hai trục đối xứng của đồ thị hàm số là hai đường phân giác của các góc tạo bởi hai đường tiệm cận.
Đồ thị hàm số như sau:
b) \(y = \frac{{2{x^2} + 3x - 5}}\)
1. Tập xác định: D = ℝ\{−1}.
2. Sự biến thiên
Ta có: y = 2x + 1 − \(\frac{6}\).
Giới hạn tại vô cực:
\(\mathop {\lim }\limits_{x \to - \infty } y = - \infty ;\) \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty \).
Do đó, đồ thị hàm số không có tiệm cận ngang.
\(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{2{x^2} + 3x - 5}} = - \infty \); \(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \frac{{2{x^2} + 3x - 5}} = + \infty \).
Do đó, đường thẳng x = −1 là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - (2x + 1)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {2x + 1 - \frac{6} - (2x + 1)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 6}} = 0.\)
Do đó, đường thẳng y = 2x + 1 là đường tiệm cận xiên của đồ thị hàm số.
Ta có: y' =\(\frac{{2{x^2} + 4x + 8}}{{{{\left( {x + 1} \right)}^2}}}\) = \(\frac{{2{{\left( {x + 1} \right)}^2} + 6}}{{{{\left( {x + 1} \right)}^2}}}\) > 0, với mọi x ≠ −1.
Bảng biến thiên của hàm số như sau:
Hàm số đồng biến trên các khoảng (−∞; −1) và (−1; +∞).
Hàm số không có cực trị.
3. Đồ thị hàm số
Đồ thị hàm số cắt trục tung tại điểm (0; −5).
Đồ thị hàm số cách trục hoành tại điểm \(\left( { - \frac{5}{2};0} \right)\) và (1; 0).
Đồ thị hàm số có tâm đối xứng là điểm (−1; −1).
Hai trục đối xứng của đồ thị là hai đường phân giác của các góc tạo bởi hai đường tiệm cận.
Đồ thị hàm số như sau:
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |