Bài tập  /  Bài đang cần trả lời

b) Tìm tọa độ các điểm G, H, I.

b) Tìm tọa độ các điểm G, H, I.

1 trả lời
Hỏi chi tiết
12
0
0
Trần Đan Phương
13/09 17:25:45

b) Trọng tâm G của tam giác ABC có tọa độ là:

 xG=xA+xB+xC3=−3+3+33=1

yG=yA+yB+yC3=−1+5+−43=0

Suy ra G(1; 0).

AH vuông góc với BC nên đường thẳng AH có vectơ pháp tuyến là: BC→=0;−9

Phương trình đường thẳng AH đi qua A(-3; -1): 0.(x + 3) – 9(y +1) = 0 ⇔ y + 1 = 0.

CH vuông góc với AB nên đường thẳng CH có vectơ pháp tuyến là: AB→=6;6 = 6(1; 1).

Phương trình đường thẳng CH đi qua C(3; -4): 1.(x - 3) + 1.(y + 4) = 0 ⇔ x + y + 1 = 0.

H là giao của AH và CH nên là nghiệm của hệ phương trình:

y+1=0x+y+1=0⇔x=0y=−1 ⇒ H(0; -1).

Gọi M, N lần lượt là trung điểm của AB, BC; d1, d2 lần lượt là trung trực của AB, BC

Suy ra M(0; 2) và N  3;12

Đường thẳng d1 vuông góc với AB nên có vectơ pháp tuyến là: AB→=6;6  = 6(1; 1).

Phương trình đường thẳng d1 đi qua M(0; 2) là: 1.(x – 0) + 1.(y – 2) = 0 hay x + y – 2 = 0.

Đường thẳng d2 vuông góc với BC nên có vectơ pháp tuyến là: BC→=0;−9 .

Phương trình đường thẳng d1 đi qua N3;12 là: 0(x – 0) – 9(y – 12 ) = 0 ⇔ y –12  = 0.

Giao điểm của d1 và d2 là tâm I đường tròn ngoại tiếp tam giác ABC nên tọa độ I là nghiệm của hệ:

 x+y−2=0y−12=0⇔x=32y=12

Do đó I32;12 .

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 10 mới nhất
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500K