Cho hình dưới, biết: \(\widehat {EBA} = \widehat {BDC}\)
a) Trong hình vẽ có bao nhiêu tam giác vuông? Hãy kể tên các tam giác đó.
b) Cho biết AE = 10 cm, AB = 15 cm, BC = 12 cm. Hãy tính độ dài các đoạn thẳng CD, BE, BD và ED (làm tròn đến chữ số thập phân thứ nhất).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a)
+ ∆ABE vuông tại A.
+ ∆BCD vuông tại C.
+ Ta có: \({\widehat B_3} + {\widehat D_1} = 90^\circ \)
Mà \({\widehat D_1} = {\widehat B_1}\) ( giả thiết)
Suy ra: \({\widehat B_3} + {\widehat B_1} = 90^\circ \)
\( \Rightarrow {\widehat B_2} = 180^\circ - \left( {{{\widehat B}_3} + {{\widehat B}_1}} \right) = 90^\circ \)
Vậy ∆BED vuông tại B.
Vậy có 3 tam giác vuông là ∆ABE, ∆BCD, ∆BED.
b)
+ Áp dụng định lý Py-ta-go trong ∆ABE vuông tại A ta có:
EB2 = AE2 + AB2 = 102 + 152 = 325
\( \Rightarrow 5\sqrt {13} \approx 18\) cm
+ Xét ∆ABE và ∆CDB có:
\(\widehat A = \widehat C = 90^\circ \)
\({\widehat B_1} = {\widehat D_1}\)
Suy ra: ∆ABE ᔕ ∆ADB (g.g).
\( \Rightarrow \frac = \frac = \frac\)
\( \Rightarrow \frac = \frac{{5\sqrt {13} }} = \frac\)
⇒ CD = 18; DB = \(6\sqrt {13} \) ≈ 21,6 cm
+ Áp dụng định lý Py – ta - go trong ∆EBD vuông tại B ta có:
ED2 = EB2 + BD2
\( = {\left( {5\sqrt {13} } \right)^2} + {\left( {6\sqrt {13} } \right)^2} = 793\)
⇒ ED ≈ 28,2 cm
Vậy BE ≈ 18 cm; CD = 18 cm; BD ≈ 21,6 cm; ED ≈ 28,2 cm
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |