LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau, chia hết cho 5 và chữ số 2 luôn có mặt đúng một lần?

Từ các chữ số 0, 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số đôi một khác nhau, chia hết cho 5 và chữ số 2 luôn có mặt đúng một lần?
1 trả lời
Hỏi chi tiết
17
0
0

Lời giải

Gọi số cần tìm là \(\overline {abc{\rm{d}}e} \)

+) TH1: e = 0

e có 1 cách chọn

Chữ số 2 có 4 cách chọn

Ba chỗ còn lại có 4 × 3 × 2 = 24 cách

Suy ra có 4 × 24 = 96 cách

+) TH2: e = 5; a = 2

a, e có 1 cách chọn

b có 4 cách chọn

c có 3 cách chọn

d có 2 cách chọn

Suy ra có 4 × 3 × 2 = 24 cách

+) TH3: e = 5; a ≠ 2

e có 1 cách chọn

a có 3 cách chon

Số 2 có 3 cách

Hai số còn lại có 3 × 2 = 6 cách

Suy ra có 3 × 3 × 6 = 54 cách

Vậy có tất cá 96 + 24 + 54 = 174 số thỏa mãn yêu cầu đề bài.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư