Quan sát Hình 10 và cho biết:
– Trong ba cạnh AB, AA’ và AD của hình hộp chữ nhật, cạnh nào song song với một trong ba mặt phẳng chiếu (P1), (P2), (P3)?
– Tìm hai giao tuyến của (P1) và (P2) với mặt phẳng đi qua điểm D và vuông góc với cả (P1) và (P2).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
– Trong ba cạnh AB, AA’ và AD của hình hộp chữ nhật ABCD.A’B’C’D’, ta có:
⦁ Cạnh AB song song với các mặt phẳng chiếu (P1) và (P2);
⦁ Cạnh AA’ song song với các mặt phẳng chiếu (P1) và (P3);
⦁ Cạnh AD song song với các mặt phẳng chiếu (P2) và (P3).
Vậy cả ba cạnh AB, AA’ và AD của hình hộp chữ nhật đều song song với một trong ba mặt phẳng chiếu (P1), (P2) và (P3).
– Xác định hai giao tuyến của (P1) và (P2) với mặt phẳng đi qua điểm D và vuông góc với cả (P1) và (P2):
Ta có AD ⊥ AA’ (do ABCD.A’B’C’D’ là hình hộp chữ nhật).
Mà AA’ // (P1).
Suy ra AD ⊥ (P1).
Do đó (AA’D’D) ⊥ (P1).
Chứng minh tương tự, ta được (AA’D’D) ⊥ (P2).
Vì vậy mặt phẳng đi qua điểm D và vuông góc với cả (P1) và (P2) là (AA’D’D).
Gọi D1, D1’ lần lượt là hình chiếu vuông góc của các điểm D, D’ lên mặt phẳng (P1).
Suy ra D1, D1’ ∈ (AA’D’D) và D1, D1’ ∈ (P1).
Do đó hay d4 = (AA’D’D) ∩ (P1).
Chứng minh tương tự, ta được d2 = (AA’D’D) ∩ (Pvấvaa2).
Vậy d4, d2 lần lượt là hai giao tuyến cần tìm.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |