Xét biểu thức \(A = \left( {\frac{{x\sqrt x + 8}} - 2\sqrt x } \right).\frac{{\sqrt x + 2}}.\)
a) Tìm tất cả các giá trị của biến x để tính giá trị của biểu thức.
b) Chứng minh rằng với mọi giá trị của biến x tìm được trong câu a, biểu thức đã cho có giá trị không đổi.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Nếu x < 0 thì không được tính \(\sqrt x ,\) nếu x = 4 thì phép chia cho x – 4 không thực hiện được và không tính được giá trị của biểu thức đã cho.
Nếu x không âm và khác 4 thì \(x - 2\sqrt x + 4 = {\left( {\sqrt x - 1} \right)^2} + 3 > 0\) nên tất cả các phép toán có mặt trong biểu thức đã cho đều thực hiện được.
Vậy tập hợp các giá trị của biến x để tính được giá trị của biểu thức là {x ∈ ℝ | x ≥ 0, x ≠ 4}.
b) Với x không âm và khác 4 thì
\[x\sqrt x + 8 = {\left( {\sqrt x } \right)^3} + {2^3} = \left( {\sqrt x + 2} \right)\left( {x - 2\sqrt x + 4} \right)\] ;
\[\frac{{x\sqrt x + 8}} = \frac{{\left( {\sqrt x + 2} \right)\left( {x - 2\sqrt x + 4} \right)}} = \sqrt x + 2.\]
Do đó \(A = \left( {\frac{{x\sqrt x + 8}} - 2\sqrt x } \right).\frac{{\sqrt x + 2}}\)
\( = \left( {\sqrt x + 2 - 2\sqrt x } \right).\frac{{\sqrt x + 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\)
\( = \left( {2 - \sqrt x } \right).\frac{1}{{\sqrt x - 2}} = - 1.\)
Vậy với mọi giá trị của biến x tìm được trong câu a, biểu thức đã cho nhận giá trị không đổi.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |