LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho tam giác IDE cân tại I, IA vừa là đường phân giác, vừa là đường cao. CMR

cho tam giác IDE cân tại I, IA vừa là đường phân giác, vừa là đường cao. CMR:
a. Tam giác IDE cân
b.IA là trung tuyến
1 trả lời
Hỏi chi tiết
21
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh rằng trong tam giác \( I D E \) cân tại \( I \), \( I A \) vừa là đường phân giác vừa là đường cao, ta sẽ sử dụng một số tính chất của tam giác đều và tam giác cân.

**a. Tam giác \( I D E \) cân:**

1. Vì tam giác \( I D E \) là tam giác cân tại \( I \), nên \( ID = IE \).
2. Đường thẳng \( I A \) là đường phân giác của góc \( D I E \), do đó nó chia góc \( D I E \) thành hai góc bằng nhau.
3. Ta có \( A \) là điểm trên cạnh \( D E \). Do \( A \) thuộc đường phân giác, theo định lý đường phân giác, tỷ số độ dài hai cạnh \( D A \) và \( E A \) là bằng tỷ lệ độ dài hai cạnh còn lại \( I D \) và \( I E \). Từ đó ta có:
\[
\frac{D A}{E A} = \frac{I D}{I E} = 1
\]
Điều này cho thấy \( D A = E A \), chứng tỏ rằng điểm \( A \) là trung điểm của \( D E \).

4. Do đó, tam giác \( I D E \) là tam giác cân tại \( I \) và \( A \) là trung điểm của \( D E \).

**b. \( I A \) là trung tuyến:**

1. Gọi \( M \) là trung điểm của cạnh \( D E \) (có nghĩa là \( M \) và \( A \) trùng nhau vì đã chứng minh \( A \) là trung điểm).
2. Vì đã chứng minh \( D A = E A \) và \( A \) nằm trên cạnh \( D E \), điều này chứng tỏ rằng \( I A \) là trung tuyến từ đỉnh \( I \) đến cạnh \( D E \).

Vậy, ta có thể khẳng định:
1. Tam giác \( I D E \) là tam giác cân tại \( I \).
2. Đoạn thẳng \( I A \) là trung tuyến.

Từ các lập luận trên, ta đã chứng minh được yêu cầu bài toán.

### Kết luận:
- **(a):** Tam giác \( I D E \) là tam giác cân.
- **(b):** \( I A \) là trung tuyến.
0
0
Đặng Mỹ Duyên
14/09 22:01:10
+5đ tặng
               I   •
               •.  •   •
           •       •        •    
       •           •             •
D•_________•__________•E 
                  A
a)ta có IA vừa là đường cao vừa là phân giác 
=>∆IDE cân (đpcm)
B)∆IDE cân ,AI là đường cao 
=> AI là trung tuyến 

 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư