Tim x biết : \(\left( \frac{1}{2} - 1 \right) \cdot \left( \frac{1}{3} - 1 \right) \cdots \left( \frac{1}{9} - 1 \right) \cdot (2x - 9) = \frac{2}{8} + \frac{3}{28} + \frac{4}{77} + \frac{7}{198}\) Tham khảo câu trả lời từ Trợ lý ảo Lazi To solve the equation: \[ \left( \frac{1}{2} - 1 \right) \cdot \left( \frac{1}{3} - 1 \right) \cdots \left( \frac{1}{9} - 1 \right) \cdot (2x - 9) = \frac{2}{8} + \frac{3}{28} + \frac{4}{77} + \frac{7}{198} \] let’s break it down step by step. ### Step 1: Simplify the left side The left side can be simplified as follows: \[ \left( \frac{1}{2} - 1 \right) = -\frac{1}{2} \] \[ \left( \frac{1}{3} - 1 \right) = -\frac{2}{3} \] \[ \left( \frac{1}{4} - 1 \right) = -\frac{3}{4} \] \[ \left( \frac{1}{5} - 1 \right) = -\frac{4}{5} \] \[ \left( \frac{1}{6} - 1 \right) = -\frac{5}{6} \] \[ \left( \frac{1}{7} - 1 \right) = -\frac{6}{7} \] \[ \left( \frac{1}{8} - 1 \right) = -\frac{7}{8} \] \[ \left( \frac{1}{9} - 1 \right) = -\frac{8}{9} \] Now multiply these fractions together: \[ -\frac{1}{2} \cdot -\frac{2}{3} \cdot -\frac{3}{4} \cdot -\frac{4}{5} \cdot -\frac{5}{6} \cdot -\frac{6}{7} \cdot -\frac{7}{8} \cdot -\frac{8}{9} \] This gives us an overall sign of \((-1)^8 = 1\), and multiplying the numeric parts: \[ \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9} = \frac{8!}{2 \cdot 9!} = \frac{1}{9} \] Thus, we have: \[ \frac{1}{9} \cdot (2x - 9) \] ### Step 2: Simplify the right side Next, let's simplify the right side: \[ \frac{2}{8} + \frac{3}{28} + \frac{4}{77} + \frac{7}{198} \] Finding a common denominator would be complicated, so we can convert each fraction: \[ \frac{2}{8} = \frac{1}{4} = \frac{21}{84} \] \[ \frac{3}{28} = \frac{9}{84} \] \[ \frac{4}{77} = \frac{48}{924} \text{ (common denominator with others)} \] \[ \frac{7}{198} = \frac{84}{924} \] Combining all terms gives: \[ \frac{21 + 9 + 48 + 84}{924} = \frac{162}{924} = \frac{27}{154} \] ### Step 3: Set the two sides equal to each other Now we equate both sides: \[ \frac{1}{9}(2x - 9) = \frac{27}{154} \] ### Step 4: Solve for \(x\) Multiply both sides by 9: \[ 2x - 9 = \frac{243}{154} \] Now, add 9 (or \(\frac{1386}{154}\)) to both sides: \[ 2x = \frac{243 + 1386}{154} \] \[ 2x = \frac{1629}{154} \] Dividing both sides by 2: \[ x = \frac{1629}{308} = \frac{543}{102.67} \approx 5.28 \] Thus, the value of \(x\) is approximately 5.28.