B= -3-2/3+3/5(-10/9-25/3)-5/6 Tham khảo câu trả lời từ Trợ lý ảo Lazi Let's simplify the expression step by step. The equation is: \[ B = -3 - \frac{2}{3} + \frac{3}{5} \left( -\frac{10}{9} - \frac{25}{3} \right) - \frac{5}{6} \] 1. First, let's simplify the term inside the parentheses: \[ -\frac{10}{9} - \frac{25}{3} \] To combine these, we need a common denominator. The least common multiple of \(9\) and \(3\) is \(9\). Rewrite \(-\frac{25}{3}\) with a denominator of \(9\): \[ -\frac{25}{3} = -\frac{25 \times 3}{3 \times 3} = -\frac{75}{9} \] Now combine: \[ -\frac{10}{9} - \frac{75}{9} = -\frac{10 + 75}{9} = -\frac{85}{9} \] 2. Now substitute this back into the original equation: \[ B = -3 - \frac{2}{3} + \frac{3}{5} \left( -\frac{85}{9} \right) - \frac{5}{6} \] 3. Next, calculate \(\frac{3}{5} \left(-\frac{85}{9}\right)\): \[ \frac{3}{5} \cdot -\frac{85}{9} = -\frac{3 \cdot 85}{5 \cdot 9} = -\frac{255}{45} \] We can simplify \(-\frac{255}{45}\): Both numerator and denominator are divisible by \(15\): \[ -\frac{255 \div 15}{45 \div 15} = -\frac{17}{3} \] 4. Now substitute this back into the equation: \[ B = -3 - \frac{2}{3} - \frac{17}{3} - \frac{5}{6} \] 5. Next, combine the fractions. First, convert \(-3\) to a fraction: \[ -3 = -\frac{9}{3} \] Now we can add: \[ B = -\frac{9}{3} - \frac{2}{3} - \frac{17}{3} - \frac{5}{6} \] Combine the first three terms: \[ B = -\frac{9 + 2 + 17}{3} - \frac{5}{6} = -\frac{28}{3} - \frac{5}{6} \] 6. Now we need a common denominator to add \(-\frac{28}{3}\) and \(-\frac{5}{6}\). The least common multiple of \(3\) and \(6\) is \(6\): Convert \(-\frac{28}{3}\): \[ -\frac{28}{3} = -\frac{28 \times 2}{3 \times 2} = -\frac{56}{6} \] 7. Now combine: \[ B = -\frac{56}{6} - \frac{5}{6} = -\frac{56 + 5}{6} = -\frac{61}{6} \] So, the final value of \(B\) is: \[ B = -\frac{61}{6} \]