Bài tập  /  Bài đang cần trả lời

Chứng tỏ các số sau là hai số nguyên tố cùng nhau (n là số tự nhiên) 18n + 3 và 21n + 7

chứng tỏ các số sau là hai số nguyên tố cùng nhau ( n là số tự nhiên 

18n + 3 và 21n + 7

3 trả lời
Hỏi chi tiết
783
0
4
Vũ Phan Bảo Hân
03/12/2020 15:20:41
+5đ tặng
Giả sử 4n + 34n + 3 và 2n + 32n + 3 cùng chia hết cho số nguyên tố d thì:
2(2n + 3) − (4n + 3) ⋮ d → 3 ⋮ d → d = 3
Để (2n + 3,4n + 3) = 1 thì d≠3. Ta có:
4n + 3 không chia hết cho 3 nếu 4n không chia hết cho 3 hay n không chia hết cho 3.
Kết luận: Với n không chia hết cho 3 thì 4n + 3 và 2n + 3 là hai số nguyên tố cùng nhau.
b) Giả sử 18n + 3 và 21n + 7 cùng chia hết cho số nguyên tố d
Ta có: 6(21n + 7) − 7(18n + 3) ⋮ d → 21 ⋮ d → d ∈ {3; 7}. Hiển nhiên d ≠ 3 vì 21n + 721n + 7 không chia hết cho 3.
Để (18n + 3, 21n + 7) = 1 thì d ≠ 7 tức là 18n + 3 không chia hết cho 7, nếu 18n + 3 − 21 không chia hết cho 7 ↔ 18(n − 1) không chia hết cho 7↔n − 1 không chia hết cho 7 ↔ n ≠ 7k + 1 (k ∈ N).
Kết luận: Với n ≠ 7k + 1 (k ∈ N) thì 18n + 3 và 21n + 7 là hai số nguyên tố cùng nhau.
 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
5
2
Snwn
03/12/2020 15:20:45
+4đ tặng
itzkhoimc
trừ 1 điểm vì copy mạng
1
3
Ly Lan
03/12/2020 15:21:09
+3đ tặng
Hai số không thể nguyên tố cùng nhau vì chúng chia hết cho 3 mà 2 snt cùng nhau có UCLN bằng 1
itzkhoimc
bn đúng nhưng ko cụ thể

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k