Bài tập  /  Bài đang cần trả lời

Bài 49 trang 29 sgk Toán 9 - tập 1

1 trả lời
Hỏi chi tiết
360
0
0
Bạch Tuyết
12/12/2017 01:24:19
Khử mẫu của biểu thức lấy căn
\(ab\sqrt{\frac{a}{b}};\,\,\, \frac{a}{b}\sqrt{\frac{b}{a}};\,\,\, \sqrt{\frac{1}{b}+\frac{1}{b^{2}}};\,\,\,\ \sqrt{\frac{9a^{3}}{36b}};\,\,\, 3xy\sqrt{\frac{2}{xy}}.\)
(Giả thiết các biểu thức có nghĩa).
Hướng dẫn giải:

\(\sqrt{\frac{a}{b}}\) có nghĩa khi \(\frac{a}{b}\geq 0\) và \(\sqrt{\frac{a}{b}}=\frac{\sqrt{ab}}{\left | b \right |}.\)
Nếu \(a\geq 0, b> 0\) thì \(ab\sqrt{\frac{a}{b}}=a\sqrt{ab}.\)
Nếu \(a<0,b<0\) thì \(ab\sqrt{\frac{a}{b}}=-a\sqrt{ab}.\)
Tương tự như vậy ta có: \(\frac{a}{b}\sqrt{\frac{b}{a}}=\frac{\sqrt{ba}}{b}.\)
Nếu \(a>0,b>0\) thì \(\frac{a}{b}\sqrt{\frac{b}{a}}=\frac{a}{b}\frac{\sqrt{ba}}{\left | a \right |}.\)
Nếu \(a<0,b<0\) thì  \(\frac{a}{b}\sqrt{\frac{b}{a}}=-\frac{\sqrt{ba}}{b}.\)
Ta có: \(\sqrt{\frac{1}{b}+\frac{1}{b^{2}}}=\sqrt{\frac{b+1}{b^{2}}}=\frac{\sqrt{b+1}}{\left | b \right |}.\)
Điều kiện để căn thức có nghĩa là \(b+1\geq 0\) hay \(b\geq -1.\) 
Do đó:
Nếu b>0 thì \(\sqrt{\frac{1}{b}+\frac{1}{b^{2}}}=\frac{\sqrt{b+1}}{ b }.\)
Nếu \(-1\leq b< 0\) thì \(\sqrt{\frac{1}{b}+\frac{1}{b^{2}}}=-\frac{\sqrt{b+1}}{b}.\)
Điều kiện để \(\sqrt{\frac{9a^{3}}{36b}}\) có nghĩa là \(\frac{9a^{3}}{36b}\geq 0\) hay \(\frac{a}{b}\geq 0\)
Cách 1
\(\sqrt{\frac{9a^{3}}{36b}}=\sqrt{\frac{a^{3}}{4b}}=\frac{\sqrt{4a^{3}b}}{4\left | b \right |}=\frac{\sqrt{4a^{2}\cdot ab}}{4\left | b \right |}=\frac{2\left | a \right |\sqrt{ab}}{4b}.\)
=\(\frac{1}{2}\left | \frac{a}{b} \right |\sqrt{ab}=\frac{a\sqrt{ab}}{2b}.\)
Cách 2.
Biến mẫu thành một bình phương rồi áp dụng quy tắc khai phương một thương:
\(\sqrt{\frac{9a^{3}}{36b}}=\sqrt{\frac{a^{3}b}{4b^{2}}}=\frac{\sqrt{a^{3}b}}{\sqrt{ab^{2}}}=\frac{\left | a \right |\sqrt{ab}}{2\left | b \right |}=\frac{1}{2}\left | \frac{a}{b} \right |\sqrt{ab}=\frac{a\sqrt{ab}}{2b}.\)
Điều kiện để \(\sqrt{\frac{2}{xy}}\) có nghĩa là \(\frac{2}{xy}\geq 0\) hay xy>0.
Do đó 
\(3xy\sqrt{\frac{2}{xy}}=3xy\frac{\sqrt{2xy}}{\left | xy \right |}=3xy\frac{\sqrt{2xy}}{xy}=3\sqrt{2xy}.\)
Logiaihay.com

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư