Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 39 trang 93 sách bài tập Toán 8 Tập 2: Cho hình bình hành ABCD .Gọi E là trung điểm của AB, F là trung điểm của CD. Chứng minh hai tam giác ADE và CBF đồng dạng với nhau.
Lời giải:
Vì ABCD là hình bình hành nên:
AB = CD (1)
Theo giả thiết:
AE = EB = 1/2 AB (2)
DF = FC = 1/2 CD (3)
Từ (1), (2) và (3) suy ra:
EB = DF và BE // DF.
Suy ra tứ giác BEDF là hình bình hành (vì có cặp cạnh đối song song và bằng nhau)
Suy ra: DE // BF
Ta có: ∠(AED) =∠(ABF ) (đồng vị)
∠(ABF) = ∠(BFC) (so le trong)
Suy ra: ∠(AED) = ∠( BFC)
Xét ΔAED'và ΔCFB ta có:
∠(AED) =∠( BFC) (chứng minh trên)
∠A = ∠C (tính chất hình bình hành)
Vậy: ΔAED đồng dạng ΔCFB (g.g)
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |