Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Xét tam giác ACD và tam giác BDC có:
AD = BC (tính chất hình thang)
CD chung
AC = BD (do ABCD là hình thang cân)
Do đó, ∆ACD = ∆BDC (c.c.c)
Suy ra ˆACD=ˆBDC hay ˆPCD=ˆPDC
⇒ Tam giác PCD cân tại P.
Do đó PD = PC (1)
Tam giác QCD có hai góc ở đáy bằng nhau ˆC=ˆD nên tam giác QCD cân tại Q
⇒ QD = QC (2)
Từ (1) và (2) suy ra PQ là đường trung trực của CD.
Chứng minh tương tự có PA = PB, QA = QB
Suy ra; P và Q cùng thuộc đường trung trực của đoạn thẳng AB.
Do đó, PQ là đường trung trực của AB.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |