Giải phương trình sau: √(x + 3) + 2x√(x + 1) = 2x + √(x^2 + 4x + 3)
0 trả lời
39 Tham khảo câu trả lời từ Trợ lý ảo Lazi Để giải phương trình này, ta bắt đầu bằng cách đặt một biến tạm thời để giảm bớt căn bậc hai trong phương trình. Đặt \(y = \sqrt{x + 1}\), ta có \(y^2 = x + 1\). Thay thế \(y\) vào phương trình ban đầu, ta được: \(\sqrt{x + 3} + 2x\sqrt{x + 1} = 2x + \sqrt{x^2 + 4x + 3}\) \(\sqrt{x + 3} + 2xy = 2x + \sqrt{x^2 + 4x + 3}\) \(2xy - \sqrt{x^2 + 4x + 3} = 2x - \sqrt{x + 3}\) Bình phương cả hai vế của phương trình, ta có: \((2xy - \sqrt{x^2 + 4x + 3})^2 = (2x - \sqrt{x + 3})^2\) \(4x^2y^2 - 4xy\sqrt{x^2 + 4x + 3} + x^2 + 4x + 3 = 4x^2 - 4x\sqrt{x + 3} + x + 3\) \(4x^2y^2 - 4xy\sqrt{x^2 + 4x + 3} + x^2 + 4x + 3 = 4x^2 - 4x\sqrt{x + 3} + x + 3\) \(4x^2y^2 - 4xy\sqrt{x^2 + 4x + 3} = 4x^2 - 4x\sqrt{x + 3}\) \(4xy(xy - \sqrt{x^2 + 4x + 3}) = 4x(x - \sqrt{x + 3})\) \(xy - \sqrt{x^2 + 4x + 3} = x - \sqrt{x + 3}\) \(xy - x = \sqrt{x^2 + 4x + 3} - \sqrt{x + 3}\) \(x(y - 1) = \sqrt{x^2 + 4x + 3} - \sqrt{x + 3}\) \(x(y - 1) = \frac{(x^2 + 4x + 3) - (x + 3)}{\sqrt{x^2 + 4x + 3} + \sqrt{x + 3}}\) \(x(y - 1) = \frac{x^2 + 3x}{\sqrt{x^2 + 4x + 3} + \sqrt{x + 3}}\) \(x(y - 1) = \frac{x(x + 3)}{\sqrt{x^2 + 4x + 3} + \sqrt{x + 3}}\) \(x(y - 1) = \frac{x(x + 3)}{\sqrt{(x + 1)(x + 3)} + \sqrt{x + 3}}\) \(x(y - 1) = \frac{x(x + 3)}{(\sqrt{x + 1} + 1)\sqrt{x + 3}}\) \(x(y - 1) = \frac{x(x + 3)}{\sqrt{x + 1}\sqrt{x + 3} + \sqrt{x + 3}}\) \(x(y - 1) = \frac{x(x + 3)}{\sqrt{x + 3}(\sqrt{x + 1} + 1)}\) \(x(y - 1) = \frac{x(x + 3)}{(\sqrt{x + 3} + 1)(\sqrt{x + 1} + 1)}\) \(x(y - 1) = \frac{x(x + 3)}{(\sqrt{x + 3} + 1)^2}\) \(x(y - 1) = \frac{x(x + 3)}{x + 3 + 2\sqrt{x + 3} + 1}\) \(x(y - 1) = \frac{x(x + 3)}{x + 4 + 2\sqrt{x + 3}}\) \(x(y - 1) = \frac{x(x + 3)}{(x + 4) + 2\sqrt{x + 3}}\) \(x(y - 1) = \frac{x(x + 3)}{(x + 4) + 2\sqrt{x + 3}} \cdot \frac{(x + 4) - 2\sqrt{x + 3}}{(x + 4) - 2\sqrt{x + 3}}\) \(x(y - 1) = \frac{x(x + 3)((x + 4) - 2\sqrt{x + 3})}{(x + 4)^2 - (2\sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{x^2 + 8x + 16 - 4(x + 3)}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{x^2 + 8x + 16 - 4x - 12}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{x^2 + 4x + 4 - 2\sqrt{x + 3}}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})(x + 2 - \sqrt{x + 3})}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y - 1) = \frac{x(x + 3)(x + 4 - 2\sqrt{x + 3})}{(x + 2 - \sqrt{x + 3})^2}\) \(x(y