LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC vuông tại A, gọi E và M theo thứ tự là trung điểm của AC và BC, lấy điểm D đối xứng vs E qua M

cho tam giác ABC vuông tại A ,gọi E và M theo thứ tự là trung điểm của AC và BC ,lấy điểm D đối xứng vs E qua M.
a)CM tứ giác BECD là hình bình hành
b)tứ giác ABDE là hình j?
c) gọi I, K lần lượt là giao điểm của AD, AM vs BE. tính IK/DC
1 trả lời
Hỏi chi tiết
149
1
0
+5đ tặng

a) Để chứng minh CM tứ giác BECD là hình bình hành, chúng ta cần chứng minh các cặp cạnh đối diện của nó bằng nhau và các góc trong bằng nhau.

  • BE=MD (vì D là điểm đối xứng của E qua M).
  • BC=EA (vì E là trung điểm của AC).

Vậy, hai cặp cạnh đối diện bằng nhau.

Bây giờ, ta cần chứng minh các góc trong. Có hai cách:

  • BE∥AD (vì AD và BE là hai đoạn thẳng chứa các cạnh của tam giác và BE=AD vì D là điểm đối xứng của E qua M), từ đó suy ra ∠CBE=∠CAD.
  • BE∥AD nên ∠BED=∠DEA.

Do đó, CM tứ giác BECD là hình bình hành.

b) Tứ giác ABDE là hình bình hành

c) Gọi I là giao điểm của AD và BE, K là giao điểm của AM và BE.

Chúng ta có một số tam giác tương tự: AED∼BEM (do hai cặp góc tương đồng) và ACD∼CBM (do hai cặp góc tương đồng).

Từ AED∼BEM, ta có MEIK​=DBID​.

Từ ACD∼CBM, ta có DBID​=MBCM​.

Kết hợp hai phương trình trên, ta có MEIK​=MBCM​.

Ngoài ra, ta cũng có =MB/ME​=1/2​ vì E là trung điểm của AC.

Từ đó, ta có IK/ME​=CM/MB=2.

Vậy, IK/DC=2/3.







 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 8 mới nhất
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư