LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Tìm x: ∣x + 2∣ + ∣2x + 1∣ = 4x

Tìm x: ∣x + 2∣ + ∣2x + 1∣ = 4x
0 trả lời
Hỏi chi tiết
31
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để giải phương trình \(\left| x + 2 \right| + \left| 2x + 1 \right| = 4x\), ta cần xem xét các trường hợp khác nhau dựa trên giá trị của \(x\).

### Trường hợp 1: \(x \geq 0\)

1. **Nếu \(x \geq 0\)**:
- \(\left| x + 2 \right| = x + 2\)
- \(\left| 2x + 1 \right| = 2x + 1\) (vì \(2x + 1 \geq 0\) khi \(x \geq -\frac{1}{2}\))

Phương trình trở thành:
\[
(x + 2) + (2x + 1) = 4x
\]
\[
x + 2 + 2x + 1 = 4x
\]
\[
3x + 3 = 4x
\]
\[
3 = x
\]

Vậy \(x = 3\) là một nghiệm. Kiểm tra lại:
\[
\left| 3 + 2 \right| + \left| 2(3) + 1 \right| = 4(3)
\]
\[
5 + 7 = 12
\]
\[
12 = 12
\]
Đúng, vậy \(x = 3\) là nghiệm.

### Trường hợp 2: \(-\frac{1}{2} \leq x < 0\)

2. **Nếu \(-\frac{1}{2} \leq x < 0\)**:
- \(\left| x + 2 \right| = x + 2\)
- \(\left| 2x + 1 \right| = -(2x + 1)\) (vì \(2x + 1 < 0\) khi \(x < -\frac{1}{2}\))

Phương trình trở thành:
\[
(x + 2) + (-(2x + 1)) = 4x
\]
\[
x + 2 - 2x - 1 = 4x
\]
\[
-x + 1 = 4x
\]
\[
1 = 5x
\]
\[
x = \frac{1}{5}
\]

Kiểm tra lại:
\[
\left| \frac{1}{5} + 2 \right| + \left| 2\left(\frac{1}{5}\right) + 1 \right| = 4\left(\frac{1}{5}\right)
\]
\[
\left| \frac{1}{5} + 2 \right| + \left| \frac{2}{5} + 1 \right| = \frac{4}{5}
\]
\[
\left| \frac{11}{5} \right| + \left| \frac{7}{5} \right| = \frac{4}{5}
\]
\[
\frac{11}{5} + \frac{7}{5} = \frac{4}{5}
\]
\[
\frac{18}{5} \neq \frac{4}{5}
\]
Vậy \(x = \frac{1}{5}\) không phải là nghiệm.

### Trường hợp 3: \(x < -2\)

3. **Nếu \(x < -2\)**:
- \(\left| x + 2 \right| = -(x + 2)\)
- \(\left| 2x + 1 \right| = -(2x + 1)\)

Phương trình trở thành:
\[
(-(x + 2)) + (-(2x + 1)) = 4x
\]
\[
-x - 2 - 2x - 1 = 4x
\]
\[
-3x - 3 = 4x
\]
\[
-3 = 7x
\]
\[
x = -\frac{3}{7}
\]

Kiểm tra lại:
\[
\left| -\frac{3}{7} + 2 \right| + \left| 2\left(-\frac{3}{7}\right) + 1 \right| = 4\left(-\frac{3}{7}\right)
\]
\[
\left| -\frac{3}{7} + \frac{14}{7} \right| + \left| -\frac{6}{7} + \frac{7}{7} \right| = -\frac{12}{7}
\]
\[
\left| \frac{11}{7} \right| + \left| \frac{1}{7} \right| = -\frac{12}{7}
\]
\[
\frac{11}{7} + \frac{1}{7} = -\frac{12}{7}
\]
\[
\frac{12}{7} \neq -\frac{12}{7}
\]
Vậy \(x = -\frac{3}{7}\) không phải là nghiệm.

### Kết luận

Nghiệm duy nhất của phương trình là \(x = 3\).

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 7 mới nhất
Trắc nghiệm Toán học Lớp 7 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư