1. Giải phương trình 2x4 + x2 – 6 = 0
2. Cho parabol (P): y = x2 và đường thẳng (d): y = mx + 2
a, Với m = –1 : vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. Tìm tọa độ các giao điểm của parabol (P) và đường thẳng (d).
b, Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho x1 – 2x2 = 5
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
1. 2x4 + x2 – 6 = 0
Đặt x2 = t ( t ≥ 0), phương trình trở thành:
2t2 + t – 6 = 0
Δ = 1 – 4.2.( –6) = 49
=> Phương trình có 2 nghiệm phân biệt
Do t ≥ 0 nên t = 3/2
Vậy phương trình đã cho có nghiệm
2.a, Với m = –1, (d): y = –x + 2
(P): y = x2
Bảng giá trị:
Đồ thị (P): y = x2 là 1 đường parabol nằm phía trên trục hoành, nhận trục Oy làm trục đối xứng và nhận điểm O (0;0) làm đỉnh
y = –x + 2
Bảng giá trị:
Phương trình hoành độ giao điểm của (P) và (d) là:
x2 = –x + 2 ⇔ x2 + x – 2 = 0
=> Phương trình có 2 nghiệm x = 1; x = –2
Khi đó tọa độ giao điểm của (P) và (d) là (1; 1) và (–2; 4)
b, Phương trình hoành độ giao điểm của (P) và (d) là:
x2 = mx + 2 ⇔ x2 – mx – 2 = 0
Δ = m2 – 4.( –2) = m2 + 8 > 0 ∀m
=> Phương trình luôn có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi-et ta có:
Theo bài ra: x1 – 2x2 = 5 ⇔ x1 = 2x2 + 5
=> (2x2 + 5) x2 = –2 ⇔ 2x22 + 5x2 + 2 = 0
Khi đó:
Vậy có 2 giá trị của m thỏa mãn điều kiện đề bài là m = –1 ; m = 7/2
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |