LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Chứng minh rằng mỗi phép quay đều có thể xem là kết quả của việc thực hiện liên tiếp hai phép đối xứng trục.

Chứng minh rằng mỗi phép quay đều có thể xem là kết quả của việc thực hiện liên tiếp hai phép đối xứng trục.

1 trả lời
Hỏi chi tiết
7
0
0
CenaZero♡
10/09 12:23:06

Gọi QI,α là phép quay tâm I góc α . Lấy đường thẳng d bất kì qua I. Gọi d' là ảnh của d qua phép quay tâm I góc α/2. Lấy điểm M bất kì và gọi M′ = QI,α(M). Gọi M" là ảnh của M qua phép đối xứng qua trục d. M1 là ảnh của M" qua phép đối xứng qua trục d'. Gọi J là giao của MM" với d, H là giao của M″M1 với d'. Khi đó ta có đẳng thức giữa các góc lượng giác sau:

(IM, IM1) = (IM, IM′′) + (IM′′, IM1)

= 2(IJ, IM′′) + 2(IM′′, IH)

= 2(IJ, IH)

= 2α/2 = a = (IM, IM′)

Từ đó suy ra M′ ≡ M1. Như vậy M' có thể xem là ảnh của sau khi thực hiện liên tiếp hai phép đối xứng qua hai trục d và d'.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 11 mới nhất
Trắc nghiệm Toán học Lớp 11 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư