Cho ΔABC có hai trung tuyến CM, BN bằng nhau và cắt nhau tại G. Chứng minh tam giác ABC cân.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Vì G là giao điểm của hai đường trung tuyến BN và CM của tam giác ABC nên G là trọng tâm tam giác ABC.
Do đó CG=23CM;BG=23BN
Mà CM = BN (giả thiết) nên CG = BG.
Δ∆BGC có CG = BG nên Δ∆BGC cân tại G.
Suy ra GBC^=GCB^ (tính chất tam giác cân)
Xét Δ∆BMC và Δ∆CNB có:
MC = NB (theo giả thiết),
MCB^=NBC^(do GBC^=GCB^)
BC là cạnh chung.
Do đó Δ∆BMC = Δ∆CNB (c.g.c).
Suy ra MBC^=NCB^(hai góc tương ứng).
Tam giác ABC có ABC^=ACB^nên Δ∆ABC cân tại A.
Vậy nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |