LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho ΔABC có hai trung tuyến CM, BN bằng nhau và cắt nhau tại G. Chứng minh tam giác ABC cân.

Cho ΔABC có hai trung tuyến CM, BN bằng nhau và cắt nhau tại G. Chứng minh tam giác ABC cân.

1 trả lời
Hỏi chi tiết
7
0
0
Phạm Văn Phú
10/09 18:07:00

Vì G là giao điểm của hai đường trung tuyến BN và CM của tam giác ABC nên G là trọng tâm tam giác ABC.

Do đó CG=23CM;BG=23BN

Mà CM = BN (giả thiết) nên CG = BG.

Δ∆BGC có CG = BG nên Δ∆BGC cân tại G.

Suy ra GBC^=GCB^ (tính chất tam giác cân)

Xét Δ∆BMC và Δ∆CNB có:

MC = NB (theo giả thiết),

MCB^=NBC^(do GBC^=GCB^)

BC là cạnh chung.

Do đó Δ∆BMC = Δ∆CNB (c.g.c).

Suy ra MBC^=NCB^(hai góc tương ứng).

Tam giác ABC có ABC^=ACB^nên Δ∆ABC cân tại A.

Vậy nếu tam giác có hai đường trung tuyến bằng nhau thì tam giác đó cân.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư