Giải phương trình, bất phương trình sau:
a) ${16^x} > \frac{1}{8}$; b) $3{\log _3}\left( {x - 1} \right) - {\log _{\frac{1}{3}}}{\left( {x - 5} \right)^3} = 3$.Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) ${16^x} > \frac{1}{8} \Leftrightarrow {2^{4x}} > {2^{ - 3}} \Leftrightarrow 4x > - 3 \Leftrightarrow x > - \frac{3}{4}$.
Vậy tập nghiệm của bất phương trình là $S = \left( { - \frac{3}{4};\, + \infty } \right)$.
b) Điều kiện: $x > 5$.
$3{\log _3}\left( {x - 1} \right) - {\log _{\frac{1}{3}}}{\left( {x - 5} \right)^3} = 3$
$ \Leftrightarrow {\log _3}{\left( {x - 1} \right)^3} + {\log _3}{\left( {x - 5} \right)^3} = 3$$ \Leftrightarrow {\log _3}{\left[ {\left( {x - 1} \right)\left( {x - 5} \right)} \right]^3} = 3$
$ \Leftrightarrow 3{\log _3}\left[ {\left( {x - 1} \right)\left( {x - 5} \right)} \right] = 3$$ \Leftrightarrow {\log _3}\left[ {\left( {x - 1} \right)\left( {x - 5} \right)} \right] = 1$
$ \Rightarrow \left( {x - 1} \right)\left( {x - 5} \right) = 3$$ \Leftrightarrow {x^2} - 6x + 2 = 0$
$ \Leftrightarrow \left[ \begin{gathered}
x = 3 - \sqrt 7 (l) \hfill \\
x = 3 + \sqrt 7 \hfill \\
\end{gathered} \right.$.
Vậy nghiệm của phương trình là $x = 3 + \sqrt 7 $.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |