Cho ΔABC nhọn, lấy các cạnh AB, AC và BC dựng các tam giác vuông cân ΔABD,ΔACE,ΔBCF, hai tam giác đầu dựng ra phía ngoài ΔABC, còn tam giác thứ 3 dựng trong cùng một nửa mặt phẳng bờ BC với ΔABC. Chứng minh rằng tứ giác AEFD là hình bình hành.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Ta có ΔBAD~ΔBCF (Hai tam giác vuông cân)
⇒BDBF=BABC⇒BDBA=BFBC
Mặt khác DBF^=ABC^=450+B1^
⇒ΔBDF~ΔBAC (c - g - c)
⇒BDF^=BAC^Chứng minh tương tự ta có ΔBDF~ΔBAC⇒FEC^=BAC^
Ta có DAE^+ADF^=900+BAC^+900−BDF^=1800⇒AE//DF
Chứng minh tương tự ta được AD // EF. Vậy tứ giác AEFD là hình bình hànhTham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |