Bài tập  /  Bài đang cần trả lời

B. Bài tập Xét vị trí tương đối giữa các cặp đường thẳng sau: a) ∆1: \(3\sqrt 2 x + \sqrt 2 y - \sqrt 3 = 0\) và ∆2: 6x + 2y\( - \sqrt 6 \) = 0. b) d1: x \( - \sqrt 3 y\) + 2 = 0 và d2: \(\sqrt 3 \)x – 3y + 2 = 0. c) m1: x – 2y + 1 = 0 và m2: 3x + y – 2 = 0.

B. Bài tập

Xét vị trí tương đối giữa các cặp đường thẳng sau:

a) ∆1: \(3\sqrt 2 x + \sqrt 2 y - \sqrt 3 = 0\) và ∆2: 6x + 2y\( - \sqrt 6 \) = 0.

b) d1: x \( - \sqrt 3 y\) + 2 = 0 và d2: \(\sqrt 3 \)x – 3y + 2 = 0.

c) m1: x – 2y + 1 = 0 và m2: 3x + y – 2 = 0.

1 trả lời
Hỏi chi tiết
10
0
0

Hướng dẫn giải

a) Đường thẳng ∆1: \(3\sqrt 2 x + \sqrt 2 y - \sqrt 3 = 0\)có vectơ pháp tuyến là \({\overrightarrow n _1} = \left( {3\sqrt 2 ;\sqrt 2 } \right)\).

Đường thẳng ∆2: 6x + 2y\( - \sqrt 6 \) = 0 có vectơ pháp tuyến là \({\overrightarrow n _2} = \left( {6;\,\,2} \right)\).

Ta có: \({\overrightarrow n _1} = \frac{{\sqrt 2 }}{2}{\overrightarrow n _2}\) nên hai vectơ \({\overrightarrow n _1}\) và \({\overrightarrow n _2}\) cùng phương, do đó hai đường thẳng ∆1 và ∆2 song song hoặc trùng nhau.

Mặt khác, điểm A\(\left( {0;\frac{{\sqrt 6 }}{2}} \right)\) vừa thuộc ∆1 vừa thuộc ∆2.

Vậy hai đường thẳng ∆1 và ∆2 trùng nhau.

b) Vectơ pháp tuyến của đường thẳng d1: x \( - \sqrt 3 y\) + 2 = 0 là \(\overrightarrow = \left( {1; - \sqrt 3 } \right)\)và của d2: \(\sqrt 3 \)x – 3y + 2 = 0 là \(\overrightarrow = \left( {\sqrt 3 ; - 3} \right)\).

Ta có: \(\overrightarrow = \sqrt 3 \overrightarrow \) nên hai vectơ \(\overrightarrow \) và \(\overrightarrow \) cùng phương, do đó hai đường thẳng d1 và d2 song song hoặc trùng nhau.

Mặt khác, điểm B(– 2; 0) thuộc d1 nhưng không thuộc d2.

Vậy hai đường thẳng d1 và d2 song song với nhau.

c) Xét hệ phương trình \(\left\{ \begin{array}{l}x - 2y + 1 = 0\\3x + y - 2 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}3x - 6y + 3 = 0\,\,\,\,\,\,\,\left( 1 \right)\\3x + y - 2 = 0\,\,\,\,\,\,\,\,\,\left( 2 \right)\end{array} \right.\).

Lấy (2) trừ vế theo vế cho (1) ta được: 7y – 5 = 0 \( \Leftrightarrow y = \frac{5}{7}\).

Thay vào (1) ta được: \(3x - 6.\frac{5}{7} + 3 = 0 \Leftrightarrow x = \frac{3}{7}\).

Do đó hệ trên có nghiệm duy nhất \(\left( {\frac{3}{7};\frac{5}{7}} \right)\).

Vậy hai đường thẳng m1 và m2 cắt nhau tại điểm có tọa độ \(\left( {\frac{3}{7};\frac{5}{7}} \right)\).

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 10 mới nhất
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k