Cho tam giác nhọn ABC có \(\widehat {BAC} = 45^\circ \) và có các đỉnh nằm trên đường tròn (O). Các đường cao BH, CK cắt đường tròn (O) tại D, E. Chứng minh ba điểm D, O, E thẳng hàng.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Do BH, CK là đường cao ∆ABC nên BH ⊥ AC, CK ⊥ AB.
Xét ∆ABH vuông tại H có \(\widehat {BAH} = 45^\circ \) nên \(\widehat {ABH} = 90^\circ - \widehat {BAH} = 90^\circ - 45^\circ = 45^\circ .\)
Mặt khác, \(\widehat {ABD} = \widehat {ACD}\) (hai góc nội tiếp cùng chắn cung AD) nên \(\widehat {ACD} = 45^\circ .\) (1)
Tương tự, ta có \(\widehat {ACK} = 90^\circ - \widehat {CAK} = 90^\circ - 45^\circ = 45^\circ .\) (2)
Từ (1) và (2) suy ra \(\widehat {DCE} = \widehat {ACD} + \widehat {ACK} = 45^\circ + 45^\circ = 90^\circ \)
Mà \(\widehat {DCE}\) là góc nội tiếp chắn cung DE nên DE là đường kính của đường tròn (O).
Vậy ba điểm D, O, E thẳng hàng.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |