Bài tập  /  Bài đang cần trả lời

Cho tam giác \[\Delta ABC\] vuông ở A. Trên cạnh AC lấy 1 điểm M, dựng đường tròn tâm (O) có đường kính MC. Đường thẳng BM cắt đường tròn tâm (O) tại D, đường thẳng AD cắt đường tròn tâm (O) tại S 1) Chứng minh tứ giác ABCD là tứ giác nội tiếp và CA là tia phân giác của góc \[\widehat {BCS}\] 2) Gọi E là giao điểm của BC với đường tròn (O). Chứng minh các đường thẳng BA, EM, CD đồng quy 3) Chứng minh M là tâm đường tròn nội tiếp tam giác \[\Delta ADE\]

Cho tam giác \[\Delta ABC\] vuông ở A. Trên cạnh AC lấy 1 điểm M, dựng đường tròn tâm (O) có đường kính MC. Đường thẳng BM cắt đường tròn tâm (O) tại D, đường thẳng AD cắt đường tròn tâm (O) tại S

1) Chứng minh tứ giác ABCD là tứ giác nội tiếp và CA là tia phân giác của góc \[\widehat {BCS}\]

2) Gọi E là giao điểm của BC với đường tròn (O). Chứng minh các đường thẳng BA, EM, CD đồng quy

3) Chứng minh M là tâm đường tròn nội tiếp tam giác \[\Delta ADE\]

1 trả lời
Hỏi chi tiết
9
0
0
Trần Đan Phương
13/09 17:28:49

1) Ta có \[\widehat {BAC} = 90^\circ \left( {gt} \right)\]

\[\widehat {MDC} = 90^\circ \] (góc nội tiếp chắn nửa đường tròn )

A, D nhìn BC dưới góc \[90^\circ \] , tứ giác ABCD nội tiếp

Vì tứ giác ABCD nội tiếp \[ \Rightarrow \widehat {ADB} = \widehat {ACB}\](cùng chắn cung AB) (1)

Ta có tứ giác DMCS nội tiếp \[ \Rightarrow \widehat {ADB} = \widehat {ACS}\](cùng bù với\[\widehat {MDS}\])    (2)

Từ (1) và (2) \[ \Rightarrow \widehat {BCA} = \widehat {ACS}\]

2) Giả sử BA cắt CD tại K. Ta có \[BD \bot CK,CA \bot BK\]

\[ \Rightarrow M\] là trực tâm \[\Delta KBC\]. Mặt khác \[\widehat {MEC} = 90^\circ \](góc nội tiếp chắn nửa đường tròn)

\[ \Rightarrow K,M,E\] thẳng hàng, hay BA, EM, CD đồng quy tại K

3) Vì tứ giác ABCD nội tiếp \[ \Rightarrow \widehat {DAC} = \widehat {DBC}\](cùng chắn )       (3)

Mặt khác tứ giác BAME nội tiếp \[ \Rightarrow \widehat {MAE} = \widehat {MBE}\](cùng chắn ) (4)

Từ (3) và (4) \[ \Rightarrow \widehat {DAM} = \widehat {MAE}\] hay AM là tia phân giác \[\widehat {DAE}\]

Chứng minh tương tự \[\widehat {ADM} = \widehat {MDE}\] hay DM là tia phân giác \[\widehat {ADE}\]

Vậy M là tâm đường tròn nội tiếp \[\Delta ADE\]

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư