Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC nhọn. Ba đường cao AI, BK, CL. Chứng minh: a) Các tứ giác AKIB, BLKC là các tứ giác nội tiếp; b) Trực tâm H của tam giác ABC là tâm đường tròn nội tiếp tam giác IKL.

Cho tam giác ABC nhọn. Ba đường cao AI, BK, CL. Chứng minh:

a) Các tứ giác AKIB, BLKC là các tứ giác nội tiếp;

b) Trực tâm H của tam giác ABC là tâm đường tròn nội tiếp tam giác IKL.

2 trả lời
Hỏi chi tiết
20
0
0
Phạm Văn Bắc
14/09 07:26:16

a) Xét ∆ABC có ba đường cao AI, BK, CL nên AI ⊥ BC, BK ⊥ AC, CL ⊥ AB.

Do ∆ABK vuông tại K và ∆ABI vuông tại I nên hai điểm K, I cùng thuộc đường tròn đường kính AB. Do đó tứ giác AKIB nội tiếp đường tròn đường kính AB.

Do ∆BCL vuông tại L và ∆BCK vuông tại K nên hai điểm L, K cùng thuộc đường tròn đường kính BC. Do đó tứ giác BLKC nội tiếp đường tròn đường kính BC.

b) Do tứ giác AKIB nội tiếp đường tròn nên tổng hai góc đối nhau của tứ giác này bằng 180°, suy ra ABI^+AKI^=180°

Mà CKI^+AKI^=180° (hai góc kề bù)

Nên CKI^=ABI^=180°-AKI^ hay IKC^=ABC^.

Tương tự ta cũng có AKL^=ABC^.

Suy ra AKL^=IKC^.

Từ đó ta có 90°-AKL^=90°-IKC^ hay LKH^=IKH^.

Vì vậy KH là đường phân giác của góc LKI.

Tương tự cũng có LH là đường phân giác của góc KLI.

Vậy H là tâm đường tròn nội tiếp tam giác IKL.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập
1
0
Phuonggg
14/09 09:58:22
+4đ tặng

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k