Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 54 trang 166 SBT Toán 8 Tập 1: Tam giác ABC có hai trung tuyến AM, BN vuông góc với nhau. Hãy tính diện tích tam giác đó theo AM và BN.
Lời giải:
Tứ giác ẠBMN có hai đường chéo vuông góc.
Ta có: SABMN = 1/2 AM.BN
Δ ABM và Δ AMC có chung chiều cao kể từ A, cạnh đáy BM = MC nên: SABM = SAMC = 1/2 SABC
ΔMNA và ΔMNC có chung chiều cao kê từ M, cạnh đáy AN = NC nên: SMAN = SMNC = 1/2 SAMC = 1/4 SABC
SABMN = SABM + SMNA = 1/2 SABC + 1/4 SABC = 3/4 SABC
Vậy SABC = 4/3 SABMN = 4/3 .1/2 .AM.BN = 2/3 AM.BN
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |