Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 22 (trang 111 sgk Hình học 11 nâng cao): Cho hình hộp ABCD.A’B’C’D’ có AB = a, BC = b, CC’ = c. Nếu AC’ = BD = B’D = √(a2 + b2 + c2 ) thì hình hộp đó có phải là hình hộp chữ nhật không? Vì sao?
Lời giải:
Áp dụng tính chất tổng bình phương hai đường chéo hình bình hành bằng tổng bình phương 4 cạnh của nó (BT 38, 4, chương II)
Ta có :
AC'2+A'C2=2(AA'2+A'C2)
B'D2+BD'2=2(BB'2+BD2)
AC'2+A'C2+BD'2+BD'2
= 2(c2+c2+AC2+BD2)
= 4(a2+b2+c2)
A’C = AC’ = B’D = BD’.
AA’C’C và BB’D’D là các hình chữ nhật.
Từ đó suy ra AA’ ⊥ AC và AA’ ⊥ BD . Do đó AA’ ⊥ (ABCD), tức hình hộp ABCD. A’B’C’D’ là hình hộp chữ nhật.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |