Bài tập  /  Bài đang cần trả lời

Chứng minh tam giác HME đồng dạng với tam giác AOB. Chứng minh M là tâm đường tròn ngoại tiếp tam giác EFH

cho tam giác ABC nhọn nội tiếp đường tròn tâm O đường kính AD , gọi E là hình chiếu của B trên AD và H là hình chiếu của A trên BC , M là trung điểm của BC
1, cminh tam giác HME đồng dạng với tam giác AOB
2, từ C vẽ CF vuông góc AD cminh M là tâm đường tròn ngoại tiếp tam giác EFH
1 trả lời
Hỏi chi tiết
495
0
0
Nguyễn Phúc
17/06/2018 12:31:19
1.
xét tứ giác ABHE có góc AEB = AHB = 90
suy ra tứ giác ABHE có 2 góc kề bằng nhau cùng nhìn đoạn AB dưới 1 góc ko đổi
suy ra tứ giác ABHE nội tiếp
suy ra góc BAO = EHM, ABH = HEO (góc ngoài bằng góc trong ko kề với nó)
ta có M là trung điểm BC
mà tam giác OBC cân tại M(OB = OC = R)
suy ra OM vuông góc với BC
xét tứ giác OMBE có góc OMB = OEB = 90
suy ra tứ giác OMBE có tổng 2 góc đối = 180 
suy ra tứ giác OMBE nội tiếp
suy ra góc OEM = OBM
ta có góc ABH = HEO(cmt)
suy ra góc ABO + OBM = HEM + OEM
kết hợp với điều vừa chứng minh ở trên ta được góc ABO = HEM
xét tam giác HME và tam giác AOB có góc BAO = EHM(cmt)
                                                              góc ABO = HEM(cmt)
suy ra tam giác HME đồng dạng với tam giác AOB

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 9 mới nhất
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư