Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho tam giác ABC vuông tại A và AH là đường cao đường tròn nội tiếp tam giác ABH và ACH. Đường thằng IJ cắt cạnh AB, AC lần lượt tại E, F. Chung minh rằng tam giác AEF là tam giác vuông cân

BT 4: Cho tam giác ABC vuông tại A và AH là đường cao. Gọi I, J lần luợt là tâm

đường tròn nội tiếp tam giác ABH và ACH. Đường thằng IJ cắt cạnh AB, AC lần lượt tại E, F. Chung minh rằng tam giác AEF là tam giác vuông cân
----- Nội dung dịch tự động từ ảnh -----
19:00
Bài tập chương 1.pdf
Xong
BÀI TẬP CHƯƠNG 1
BT 1: Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O), H là trực tâm của
tam giác ABC. Lấy điểm M thuộc cung nhỏ BC. Gọi N, E lần lượt là các điểm đối xứng
của M qua AB và AC.
1, CM: N, H, E thẳng hàng.
2, Xác định M thuộc cung nhỏ BC để NE có độ dài lớn nhất.
BT 2: Cho tam giác ABC có ba góc nhọn và nội tiếp trong đường tròn (O). Tia phân giác
trong của các góc B và C lần lượt cắt đường tròn (O) tại D, E, hai tia phân giác này cắt
nhau tại F. Gọi I, K theo thứ tự là giao điểm của dây DE với các cạnh AB, AC.
1, Chứng minh AEBF và ADAF là các tam giác cân.
2, Chứng minh FK//AB.
3, Tứ giác AIFK là hình gì?
BT 3: Cho tam giác ABC nhọn có trực tâm H. Lấy điểm K đối xứng với H qua đường
thǎng BC.
a, Chứng minh rằng tứ giác ABKC nội tiếp đường tròn (O).
b, Cho M là một điểm di chuyển trên cung nhỏ AC của (O). Chứng minh rằng trung điểm
I của KM chạy trên một cung tròn cố định.
c, Gọi E, F lần lượt là hình chiếu vuông góc của M trên các đường thẳng AB và AC.
Chứng minh rằng đường thẳng EF đi qua trung điểm của đoạn HM.
BT 4: Cho tam giác ABC vuông tại A và AH là đường cao. Gọi I, J lần lượt là tâm
đường tròn nội tiếp tam giác ABH và ACH. Đường thẳng IJ cắt cạnh AB, AC lần lượt tại
E, F. Chứng minh rằng tam giác AEF là tam giác vuông cân.
BT 5 - B11.28 (giáo trình)
Cho tam giác ABC, trên các cạnh BC, CA, AB lấy các điểm A’, Bỉ, C sao cho AA,
BB, CC’ đồng quy.
Gọi d , d2 , d3 lần lượt là các đường thẳng đối xứng với AA’, BB’, CC qua các đường
phân giác của góc A, góc B, góc C. Chứng minh rằng dị , dz, dạ đồng quy .
BT 6 - B11.30 (giáo trình)
Trên các cạnh của AABC về phía ngoài ta dựng các hình vuông. A1, B1, C, là các trung
điểm các cạnh của các hình vuông nằm đối nhau với các cạnh BC, CA, AB tương ứng.
Chứng minh rằng các đường thẳng AA, BB1, CC, đồng quy tại một điểm
BT 7 - B11.31 (giáo trình)
Cho tam giác cân ABC tại C, trên các cạnh BC, CA, AB lấy các điểm A’, B’, C’ sao cho
AA’, BB’, CC’ đồng quy.
1,Chứng minh rằng:
sin BAA' sin CBB'
sin CAA'sin ABB'
BC'
AC'
2, Bên trong tam giác ABC lấy các điểm M, N sao cho: CAM = ABN và CBM = BAN
. Chứng minh rằng: các điểm C, M, N thẳng hàng.
BT 8 - B11.34 (giáo trình)
Điểm P nằm trên đường tròn ngoại tiếp của ABC, A1, B1, C, là chân các đường vuông
3
0 trả lời
Hỏi chi tiết
167

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 8 mới nhất
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư