Bài tập  /  Bài đang cần trả lời

Cho đường tròn (O) đường kính AB. lấy điểm C thuộc (O) (C khác A và B tiếp tuyến của đường tròn (O) tại B cắt AC ở K. Từ K kẻ tiếp tuyến KD với đường tròn (O) (D là tiếp điểm khác B). 1) Chứng minh tứ giác BODK nội tiếp. 2) Biết OK cắt BD tại I. Chứng minh rằng OI⊥BD và KC.KA = KI.KO. 3) Gọi E là trung điểm của AC, kẻ đường kính CF của đường tròn (O), FE cắt AI tại H. Chứng minh rằng H là trung điểm của AI.

Cho đường tròn (O) đường kính AB. lấy điểm C thuộc (O) (C khác A và B tiếp tuyến của đường tròn (O) tại B cắt AC ở K. Từ K kẻ tiếp tuyến KD với đường tròn (O) (D là tiếp điểm khác B).

1) Chứng minh tứ giác BODK nội tiếp.

2) Biết OK cắt BD tại I. Chứng minh rằng OI⊥BD và KC.KA = KI.KO.

3) Gọi E là trung điểm của AC, kẻ đường kính CF của đường tròn (O), FE cắt AI tại H. Chứng minh rằng H là trung điểm của AI.

1 Xem trả lời
Hỏi chi tiết
10
0
0
Tôi yêu Việt Nam
10/09 20:45:12

1) Ta có OBK^=ODK^=90°

⇒OBK^+ODK^=180°.

Do đó tứ giác BODK nội tiếp.

2) Ta có KB = KD (tính chất hai tiếp tuyến cắt nhau).

Ta lại có OB = OD nên OK là đường trung trực của BD

Suy ra KO⊥BD⇒OI⊥BD.

Xét tam giác ABK vuông tại B nên KB2=KC.KA.

Xét tam giác OBK vuông tại B nên KB2=KI⋅KO.

Suy ra KC.KA=KI.KO. (đpcm).

3) Xét KCI và KOA ta có góc K chung, KC⋅KA=KI⋅KO⇔KCKI=KOKA.

Suy ra ΔKCI∽ΔKOAc.g.c. Suy ra KCI^=KOA^. (*)

Xét tam giác ACF và BAK có KBA^=CAF^=90° (1)

Mà tam giác OAC cân tại O nên OAC^=OCA^ (2)

Từ (1) và (2) suy ra ΔACF∽ΔBAK  

Suy ra BABK=ACAF⇔2BOBK=2AEAF⇔BKAF=BOAE.

Xét tam giác AEF và BOK ta có KBO^=EAF^=90° và BKAF=BOAE

 Nên  ΔAEF∽ΔBOK suy ra AEF^=BOK^⇒KEF^=KOA^ (cùng bù với AEF^) (**)

Từ (*) và (**)  ta có KCI^=KEF^ suy ra EF // CI.

Xét tam giác ACI có E là trung điểm của AC và EF // CI nên H là trung điểm của AI.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường
×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k
Gửi câu hỏi
×