Cho hình chóp $S.ABC$, gọi $M,\,\,P$ và $I$ lần lượt là trung điểm của $AB,\,\,SC$ và $SB$. Mặt phẳng $(\alpha )$ qua $MP$ và song song với $AC$ và cắt các cạnh $SA,\,\,BC$ tại $N,\,\,Q.$
a) Chứng minh đường thẳng $BC$ song sòng với mặt phẳng $(IMP)$.
b) Xác định thiết diện của $(\alpha )$ và hình chóp. Thiết diện này là hình gì?
c) Tìm giao điểm của đường thẳng $CN$ và mặt phẳng $(SMQ)$.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Ta có $IP$ là đường trung bình của tam giác $SBC$ nên $IP\,{\text{//}}\,BC$.
Mà $IP \subset (IMP)$ nên \[BC\,\,{\text{//}}\,(IMP)\].
b) Ta có $\left\{ \begin{gathered}
M \in (\alpha ) \cap (ABC) \hfill \\
(ABC) \supset AC\,{\text{//}}\,(\alpha ) \hfill \\
\end{gathered} \right.$.
Khi đó $(\alpha ) \cap (ABC) = MQ\,{\text{//}}\,AC,\,\,Q \in BC$.
Mặt khác c$\left\{ \begin{gathered}
P \in (\alpha ) \cap (SAC) \hfill \\
(SAC) \supset AC\,{\text{//}}\,(\alpha ) \hfill \\
\end{gathered} \right.$
Suy ra $(\alpha ) \cap (SAC) = PN\,{\text{//}}\,AC,\,\,N \in SA$.
Vậy thiết diện cần tìm là hình bình hành $MNPQ$.
c) Chọn mặt phẳng $(SAC)$ chứa $NC$. Tìm giao tuyến của $(SAC)$ và $(SMQ)$:
Ta có $\left\{ \begin{gathered}
S \in (SAC) \cap (SMQ) \hfill \\
AC\,{\text{//}}\,MQ,\,\,AC \subset (SAC),\,\,MQ \subset (SMQ) \hfill \\
\end{gathered} \right.$.
Do đó \[(SAC) \cap (SMQ) = Sx\,{\text{//}}\,AC\,{\text{//}}\,MQ\].
Trong mặt phẳng $(SAC)$, gọi $J = CN \cap Sx$.
Ta có $\left\{ \begin{gathered}
J \in CN \hfill \\
J \in Sx \subset (SMQ) \hfill \\
\end{gathered} \right. \Rightarrow J = CN \cap (SMQ)$.
Vậy $J$ là giao điểm của đường thẳng $CN$ và mặt phẳng $(SMQ)$.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |