LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho hình hộp ABCD.A’B’C D’. a) Chứng minh rằng (ACB’) // (A’C’D). b) Gọi G1, G2 lần lượt là giao điểm của BD’ với các mặt phẳng (ACB’) và (A’C’D). Chứng minh rằng G1, G2 lần lượt là trọng tâm của hai tam giác ACB’ và A’C’D. c) Chứng minh rằng BG1 = G1G2 = D’G2.

Cho hình hộp ABCD.A’B’C D’.

a) Chứng minh rằng (ACB’) // (A’C’D).

b) Gọi G1, G2 lần lượt là giao điểm của BD’ với các mặt phẳng (ACB’) và (A’C’D). Chứng minh rằng G1, G2 lần lượt là trọng tâm của hai tam giác ACB’ và A’C’D.

c) Chứng minh rằng BG1 = G1G2 = D’G2.

1 trả lời
Hỏi chi tiết
56
0
0
Tô Hương Liên
10/09 22:25:44

Lời giải

a)

Ta có: (ABCD) // (A’B’C’D’) ( do ABCD.A’B’C’D’ là hình hộp);

           (ABCD) ∩ (ACC’A’) = AC;

           (A’B’C’D’) ∩ (ACC’A’) = A’C’.

Do đó AC // A’C’.

Mà A’C’ ⊂ (A’C’D) nên AC // (A’C’D).

Chứng minh tương tự ta cũng có AB’ // DC’ mà DC’ ⊂ (A’C’D) nên AB’ // (A’C’D).

Ta có: AC // (A’C’D);

          AB’ // (A’C’D);

          AC, AB’ cắt nhau tại điểm A và cùng nằm trong mp(ACB’).

Do đó (ACB’) // (A’C’D).

b)

• Gọi O là tâm hình bình hành đáy ABCD, I là giao điểm của BD’ và DB’.

Tứ giác BDD’B’ có BB’ // DD’ và BB’ = DD’ nên là hình bình hành.

Do đó hai đường chéo BD’ và DB’ cắt nhau tại trung điểm I của mỗi đường.

Trong mp(BDD’B’), BD’ cắt B’O tại G1.

Mà B’O ⊂ (ACB’) nên G1 là giao điểm của BD’ với (ACB’).

Trong mp(BDD’B’), xét DBDB’ có hai đường trung tuyến BI, B’O cắt nhau tại G1 nên G1 là trọng tâm của DBDB’

Do đó \(\frac{{B'{G_1}}} = \frac{2}{3}\)

Trong (ACB’), xét DACB’ có B’O là đường trung tuyến và \(\frac{{B'{G_1}}} = \frac{2}{3}\)

Suy ra G1 là trọng tâm của DACB’.

• Gọi O’ là tâm hình bình hành đáy A’B’C’D’.

Chứng minh tương tự như trên ta cũng có: G2 là trọng tâm của DDD’B’ nên \(\frac{{D{G_2}}}{{DO'}} = \frac{2}{3}\)

Trong (A’C’D), DA’C’D có DO’ là đường trung tuyến và \(\frac{{D{G_2}}}{{DO'}} = \frac{2}{3}\)

Suy ra G2 là trọng tâm của DA’C’D.

c) Theo chứng minh câu b, ta có:

• G1 là trọng tâm của DBDB’ nên \(\frac{{B{G_1}}} = \frac{2}{3}\) và \(\frac{{I{G_1}}}{{B{G_1}}} = \frac{1}{2}\)

• G2 là trọng tâm của DDD’B’ nên \(\frac{{D'{G_2}}}{{D'I}} = \frac{2}{3}\) và \(\frac{{I{G_2}}}{{D'{G_2}}} = \frac{1}{2}\)

Do đó \(\frac{{B{G_1}}} = \frac{{D'{G_2}}}{{D'I}} = \frac{2}{3}\) và \(\frac{{I{G_1}}}{{B{G_1}}} = \frac{{I{G_2}}}{{D'{G_2}}} = \frac{1}{2}\)

Ta có: \(\frac{{B{G_1}}} = \frac{{D'{G_2}}}{{D'I}}\) và BI = D’I (do I là trung điểm của BD’)

Suy ra BG1 = D’G2.

Lại có \(\frac{{I{G_1}}}{{B{G_1}}} = \frac{{I{G_2}}}{{D'{G_2}}} = \frac{1}{2}\) nên IG1 = IG2 = \(\frac{1}{2}\)BG1

Do đó G1G2 = IG1 + IG2 = \(\frac{1}{2}\)BG1 + \(\frac{1}{2}\)BG1 = BG1.

Vậy BG1 = G1G2 = D’G2.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 11 mới nhất
Trắc nghiệm Toán học Lớp 11 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư