Cho hình hộp ABCD.A’B’C D’.
a) Chứng minh rằng (ACB’) // (A’C’D).
b) Gọi G1, G2 lần lượt là giao điểm của BD’ với các mặt phẳng (ACB’) và (A’C’D). Chứng minh rằng G1, G2 lần lượt là trọng tâm của hai tam giác ACB’ và A’C’D.
c) Chứng minh rằng BG1 = G1G2 = D’G2.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Lời giải
a)
Ta có: (ABCD) // (A’B’C’D’) ( do ABCD.A’B’C’D’ là hình hộp);
(ABCD) ∩ (ACC’A’) = AC;
(A’B’C’D’) ∩ (ACC’A’) = A’C’.
Do đó AC // A’C’.
Mà A’C’ ⊂ (A’C’D) nên AC // (A’C’D).
Chứng minh tương tự ta cũng có AB’ // DC’ mà DC’ ⊂ (A’C’D) nên AB’ // (A’C’D).
Ta có: AC // (A’C’D);
AB’ // (A’C’D);
AC, AB’ cắt nhau tại điểm A và cùng nằm trong mp(ACB’).
Do đó (ACB’) // (A’C’D).
b)
• Gọi O là tâm hình bình hành đáy ABCD, I là giao điểm của BD’ và DB’.
Tứ giác BDD’B’ có BB’ // DD’ và BB’ = DD’ nên là hình bình hành.
Do đó hai đường chéo BD’ và DB’ cắt nhau tại trung điểm I của mỗi đường.
Trong mp(BDD’B’), BD’ cắt B’O tại G1.
Mà B’O ⊂ (ACB’) nên G1 là giao điểm của BD’ với (ACB’).
Trong mp(BDD’B’), xét DBDB’ có hai đường trung tuyến BI, B’O cắt nhau tại G1 nên G1 là trọng tâm của DBDB’
Do đó \(\frac{{B'{G_1}}} = \frac{2}{3}\)
Trong (ACB’), xét DACB’ có B’O là đường trung tuyến và \(\frac{{B'{G_1}}} = \frac{2}{3}\)
Suy ra G1 là trọng tâm của DACB’.
• Gọi O’ là tâm hình bình hành đáy A’B’C’D’.
Chứng minh tương tự như trên ta cũng có: G2 là trọng tâm của DDD’B’ nên \(\frac{{D{G_2}}}{{DO'}} = \frac{2}{3}\)
Trong (A’C’D), DA’C’D có DO’ là đường trung tuyến và \(\frac{{D{G_2}}}{{DO'}} = \frac{2}{3}\)
Suy ra G2 là trọng tâm của DA’C’D.
c) Theo chứng minh câu b, ta có:
• G1 là trọng tâm của DBDB’ nên \(\frac{{B{G_1}}} = \frac{2}{3}\) và \(\frac{{I{G_1}}}{{B{G_1}}} = \frac{1}{2}\)
• G2 là trọng tâm của DDD’B’ nên \(\frac{{D'{G_2}}}{{D'I}} = \frac{2}{3}\) và \(\frac{{I{G_2}}}{{D'{G_2}}} = \frac{1}{2}\)
Do đó \(\frac{{B{G_1}}} = \frac{{D'{G_2}}}{{D'I}} = \frac{2}{3}\) và \(\frac{{I{G_1}}}{{B{G_1}}} = \frac{{I{G_2}}}{{D'{G_2}}} = \frac{1}{2}\)
Ta có: \(\frac{{B{G_1}}} = \frac{{D'{G_2}}}{{D'I}}\) và BI = D’I (do I là trung điểm của BD’)
Suy ra BG1 = D’G2.
Lại có \(\frac{{I{G_1}}}{{B{G_1}}} = \frac{{I{G_2}}}{{D'{G_2}}} = \frac{1}{2}\) nên IG1 = IG2 = \(\frac{1}{2}\)BG1
Do đó G1G2 = IG1 + IG2 = \(\frac{1}{2}\)BG1 + \(\frac{1}{2}\)BG1 = BG1.
Vậy BG1 = G1G2 = D’G2.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |