Cho tứ giác ABCD và một điểm M nằm giữa A và B. Chứng minh rằng MC + MD nhỏ hơn số lớn nhất trong hai tổng AC + AD; BC + BD.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Trước hết ta chứng minh bài toán phụ:
Cho tam giác ABC, điểm M ở trong tam giác (hoặc ở trên một cạnh nhưng không trùng với các đỉnh của tam giác). Chứng minh rằng MB+MC Thật vậy, xét ΔABD, ta có BD Xét ΔMCD có MC < DC + MD. (2) Cộng từng vế của (1) và (2) ta được: MB+MD+MC Bất đẳng thức trên vẫn đúng nếu điểm M nằm trên một cạnh nhưng không trùng với đỉnh của tam giác. Bây giờ ta vận dụng kết quả trên để giải bài toán đã cho. Vẽ điểm E đối xứng với D qua đường thẳng AB (h.7.16). Khi đó AE = AD; ME = MD và BE = BD. Vì điểm M nằm giữa A và B nên hoặc điểm M nằm trong ΔBEC hoặc điểm M nằm trong ΔAEC hoặc điểm M nằm trên cạnh EC. Ta có ME+MC Do đó MD+MC
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |