LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC có \(\widehat A\) > 90°, kẻ AD vuông góc với AB, AD = AB (tia AD nằm giữa hai tia AB và AC), kẻ AE vuông góc với AC, AE = AC (tia AE nằm giữa hai tia AB, AC). Kẻ AH vuông góc với BC, AH kéo dài cắt DE tại M. a) Chứng minh hai tam giác ABE; ADC bằng nhau và BE vuông góc với DC. b) Từ D kẻ DP vuông góc với AM, từ E kẻ EQ vuông góc với AM. Chứng minhDP = AH.c) Chứng minh M là trung điểm của đoạn thẳng DEd) Giả sử EQ = 3 cm; AQ = 4 cm. Từ Q hạ QI vuông góc với AE. Tính độ dài ...

Cho tam giác ABC có \(\widehat A\) > 90°, kẻ AD vuông góc với AB, AD = AB (tia AD nằm giữa hai tia AB và AC), kẻ AE vuông góc với AC, AE = AC (tia AE nằm giữa hai tia AB, AC). Kẻ AH vuông góc với BC, AH kéo dài cắt DE tại M.

a) Chứng minh hai tam giác ABE; ADC bằng nhau và BE vuông góc với DC.

b) Từ D kẻ DP vuông góc với AM, từ E kẻ EQ vuông góc với AM. Chứng minhDP = AH.c) Chứng minh M là trung điểm của đoạn thẳng DEd) Giả sử EQ = 3 cm; AQ = 4 cm. Từ Q hạ QI vuông góc với AE. Tính độ dài đoạnthẳng AI; IE.

1 trả lời
Hỏi chi tiết
10
0
0
Tô Hương Liên
11/09 12:16:15

Lời giải

a) Ta có \(\widehat {BAE} + \widehat {EAD} = \widehat {BAD} = 90^\circ \)

\(\widehat {CA{\rm{D}}} + \widehat {EAD} = \widehat {CAE} = 90^\circ \)

Suy ra \(\widehat {BA{\rm{E}}} = \widehat {CAD}\)

Xét tam giác ABE và tam giác ADC có

AB = AD (giả thiết)

\(\widehat {BA{\rm{E}}} = \widehat {CAD}\)(chứng minh trên)

AC = AE (giả thiết)

Suy ra △ ABE = △ ADC (c.g.c)

Do đó \(\widehat {BEA} = \widehat {ACD}\)

Vì tam giác AEC vuông cân tại A

Nên \(\widehat {CEA} = \widehat {ACE} = \frac{{90^\circ }}{2} = 45^\circ \)

Mà \(\widehat {BEA} = \widehat {ACD}\)

Suy ra \(\widehat {BEA} = \widehat {AEC} = 45^\circ \)

Suy ra \(\widehat {BEA} + \widehat {AEC} = \widehat {BEC} = 45^\circ + 45^\circ = 90^\circ \)

Hay BE ⊥ DC

b) Ta có \(\widehat {BAH} + \widehat {HAD} = \widehat {BAD} = 90^\circ \)

Vì tam giác ABH vuông tại H nên \(\widehat {BAH} + \widehat {HBA} = 90^\circ \) (trong tam giác vuông tổng hai góc nhọn bằng 90°)

Suy ra \(\widehat {DAH} = \widehat {HBA}\)

Vì tam giác ADP vuông tại H nên \(\widehat {PA{\rm{D}}} + \widehat {P{\rm{D}}A} = 90^\circ \) (trong tam giác vuông tổng hai góc nhọn bằng 90°)

Suy ra \(\widehat {BAH} = \widehat {P{\rm{D}}A}\)

Xét tam giác ABH và tam giác DAP có

\(\widehat {DAH} = \widehat {HBA}\) (chứng minh trên)

AB = AD (giả thiết)

\(\widehat {BAH} = \widehat {P{\rm{D}}A}\)(chứng minh trên)

Suy ra △ ABH = △ DAP (g.c.g)

Do đó AH = DP (hai góc tương ứng)

Vậy AH = DP.

c) Ta có \(\widehat {EAQ} + \widehat {CAQ} = \widehat {EAC} = 90^\circ \)

Vì tam giác AEQ vuông tại Q nên \(\widehat {QAE} + \widehat {QEA} = 90^\circ \) (trong tam giác vuông tổng hai góc nhọn bằng 90°)

Suy ra \(\widehat {CAQ} = \widehat {QEA}\)

Xét tam giác AEQ và tam giác CAH có

\(\widehat {AQE} = \widehat {CHA}\left( { = 90^\circ } \right)\)

AE = AC (giả thiết)

\(\widehat {CAQ} = \widehat {QEA}\) (chứng minh trên)

Suy ra △ AEQ = △ CAH (cạnh huyển – góc nhọn)

Do đó AH = EQ (hai góc tương ứng)

Mà AH = DP (chứng minh câu b)

Suy ra EQ = DP

Ta có EQ ⊥ AM, DP ⊥ AM

Suy ra EQ // PD

Xét tứ giác EQDP có EQ // PD, EQ = DP

Suy ra EQDP là hình bình hành

Mà DE cắt PQ ở M

Suy ra M là trung điểm của DE

Vậy M là trung điểm của DE.

d) Vì tam giác AQE vuông ở Q nên AE2 = EQ2 + AQ2

Hay AE2 = 32 + 42 = 9 + 16 = 25

Suy ra AE = 5

Xét tam giác AEQ vuông tại Q có QI ⊥ AE

Suy ra EQ2 = EI . EA (hệ thức lượng trong tam giác vuông)

Hay 32 = EI . 5

Suy ra EI = 1,8

Ta có AI = AE – EI = 5 – 1,8 = 3,2

Vậy EI = 1,8 cm và AI = 3,2 cm.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Bài tập Toán học Lớp 12 mới nhất
Trắc nghiệm Toán học Lớp 12 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư