LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Một tam giác có chiều cao bằng cạnh đáy. Nếu tăng chiều cao thêm 3 dm và giảm cạnh đáy đi 3 dm thì diện tích của tam giác tăng thêm 6 dm2. Tính chiều cao và cạnh đáy của tam giác đó.

Một tam giác có chiều cao bằng cạnh đáy. Nếu tăng chiều cao thêm 3 dm và giảm cạnh đáy đi 3 dm thì diện tích của tam giác tăng thêm 6 dm2. Tính chiều cao và cạnh đáy của tam giác đó.

1 trả lời
Hỏi chi tiết
8
0
0
Nguyễn Thu Hiền
11/09 14:02:33

Gọi x (dm), y (dm) lần lượt là chiều cao và độ dài cạnh đáy của tam giác với x > 0; y > 3. 

Theo bài, tam giác có chiều cao bằng cạnh đáy nên

Diện tích tam giác là:  (dm2).

Chiều cao của tam giác khi tăng thêm 3 dm là: x + 3 (dm).

Cạnh đáy của tam giác khi giảm đi 3 dm là: y – 3 (dm).

Diện tích tam giác lúc này là: (dm2).

Theo bài, nếu tăng chiều cao thêm 3 dm và giảm cạnh đáy đi 3 dm thì diện tích của tam giác tăng thêm 6 dm2 nên ta có phương trình:

(x + 3)(y – 3) = xy + 12

xy – 3x + 3y – 9 = xy + 12

xy – 3x + 3y – xy = 12 + 9

– 3x + 3y = 21

–x + y = 7.    (2)

Từ (1) và (2), ta có hệ phương trình: 

Thế vào phương trình (2) ta có:

Giải phương trình (3):

y = 28.

Thay y = 28 vào phương trình (1) ta có:

Ta thấy x = 21 và y = 28 thỏa mãn điều kiện.

Vậy tam giác đó có chiều cao là 21 dm, cạnh đáy là 28 dm.

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập liên quan
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư