Cho tam giác ABC và ABD vuông có chung cạnh huyền AB ( C, D cùng thuộc 1 nua mp có bờ là AB).
a) Chứng minh A, B , C, D cùng thuộc 1 đường tròn và gọi đường tròn đó có tâm O
b) Chứng minh CD < AB.
c) Giả sử 2 đoạn thẳng CD cắt AB tại M. Chứng minh OM = \(\frac{2}\).
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Gọi O là trung điểm của AB
Vì tam giác ABC vuông tại C
Nên C thuộc đường tròn (O) đường kính AB
Vì tam giác ABD vuông tại D
Nên D thuộc đường tròn (O) đường kính AB
Suy ra A, B, C, D cùng thuộc đường tròn (O)
b) Xét (O) có
AB là đường kính
CD là dây cung
Do đo: CD < AB
c) Ta có MA + MB = AB = 2OM (vì O là trung điểm của AB)
Suy ra OM = \(\frac{2}\)
Vậy OM = \(\frac{2}\).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |