Cho đường tròn (O) đường kính AB và một dây cung AP. Tia AP cắt tiếp tuyến tại B của đường tròn (O) tại T. Chứng minh rằng:
a) \(\widehat {AOP} = 2\widehat {ATB};\)
b) \(\widehat {APO} = \widehat {PBT}.\)
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Do AB là đường kính của đường tròn (O), P thuộc đường tròn (O), suy ra \(\widehat {APB} = 90^\circ .\)
Do đó \[\widehat {PAB} + \widehat = 90^\circ \] (1)
Do tia AP cắt tiếp tuyến tại B của đường tròn (O) tại T nên AB ⊥ BT
Do đó \[\widehat + \widehat = 90^\circ \] (2)
Từ (1), (2) suy ra \(\widehat {ATB} = \widehat \)
Mà \(\widehat = \frac{1}{2}\widehat {AOP}\) (góc nội tiếp và góc ở tâm cùng chắn cung AP) nên \(\widehat {ATB} = \frac{1}{2}\widehat {AOP}\) hay \(\widehat {AOP} = 2\widehat {ATB}.\)
b) Do A, P thuộc đường tròn (O) nên AO = OP, do đó ∆AOP cân tại O, suy ra \(\widehat {PAO} = \widehat {APO}.\)
Mà \(\widehat {PAO} = \widehat {PBT}\) (cùng phụ với \(\widehat ),\) suy ra \(\widehat {APO} = \widehat {\;PBT}.\)
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |