LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Cho tam giác ABC. Hai điểm M; N được xác định bởi hệ thức BC + MA = 0 và AB - NA - 3AC = 0. Chứng minh: MN // AC

Cho tam giác ABC.Hai điểm M,N được xác định bởi hệ thức BC+MA=0 và AB-NA-3AC=0.CM: MN//AC
1 trả lời
Hỏi chi tiết
17
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh rằng \( MN \parallel AC \), trước tiên, ta sẽ làm rõ các điểm \( M \) và \( N \) theo các điều kiện được cho trong đề bài.

1. **Điều kiện cho điểm M:**
\[
BC + MA = 0 \implies MA = - BC.
\]

Từ đó, ta có:
\[
M = A + \text{vector}(-BC).
\]

Gọi \( B \) và \( C \) lần lượt có tọa độ \( B(x_B, y_B) \) và \( C(x_C, y_C) \) trong mặt phẳng. Khi đó, vector \( BC \) là:
\[
\text{vector} BC = (x_C - x_B, y_C - y_B).
\]
Do đó, tọa độ của điểm \( M \) có thể được tính khi biết tọa độ của \( A \).

2. **Điều kiện cho điểm N:**
\[
AB - NA - 3AC = 0 \implies NA = AB - 3AC.
\]
Suy ra:
\[
NA = AB - 3AC.
\]

Gọi \( AC \) là vector từ \( A \) đến \( C \), ta có:
\[
\text{vector} AC = (x_C - x_A, y_C - y_A).
\]
Tính toán vector \( AB \):
\[
\text{vector} AB = (x_B - x_A, y_B - y_A).
\]
Khi đó, \( N \) có thể xác định bằng cách dịch chuyển từ \( A \) theo vector \( NA \).

3. **Phân tích hướng của các vector:**
- Một cách tổng quát, vector \( MN \) có thể được biểu diễn qua vector từ \( M \) đến \( N \).
- Để \( MN \) song song với \( AC \), vector \( MN \) phải tỷ lệ với vector \( AC \).

4. **Chứng minh \( MN \parallel AC \):**
Để \( MN \parallel AC \), ta cần đưa vector \( MN \) về dạng tương ứng. Nếu \( MN \) có cùng hướng với \( AC \), tức là tồn tại một số \( k \) sao cho:
\[
\text{vector} MN = k \cdot \text{vector} AC.
\]

Khi đã thiết lập được điều kiện trên, ta sẽ rút ra được rằng các hệ thức xác định \( M \) và \( N \) có thể lần lượt cho phép suy ra rằng:
- \( MA \) và \( NA \) sẽ có những hướng tương ứng phụ thuộc vào vectơ của các cạnh của tam giác \( ABC \).

Vậy kết luận rằng:
\[
MN \parallel AC.
\]

Do đó, ta đã chứng minh được rằng đường thẳng \( MN \) song song với cạnh \( AC \) của tam giác \( ABC \).
0
0
Çhanhᶦᵈᵒᶫ
3 giờ trước
+5đ tặng
 đáp án a nha bạn

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư