Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Xác định hàm số y=ax^2+bx+c có đồ thị (P), biết 

Xác định hàm số y = ax^2 + bx + c có đồ thị (P), biết 
Xác định hàm số y=ax^2+bx+c có đồ thị (P), biết 
a.(P) đi qua ba điểm A(1;0) B(2;8) C(0;-6)
b.(P) đi qua điểm A(0;5) và có đỉnh I(3;-4)
c.hàm số đạt giá trị nhỏ nhất =3 và dồ thị (P) qua các điểm (0;5) (3;13)
0 trả lời
Hỏi chi tiết
14
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để xác định hàm số \( y = ax^2 + bx + c \) có đồ thị (P), chúng ta sẽ giải quyết từng trường hợp theo yêu cầu.

### a. Hàm số đi qua ba điểm A(1;0), B(2;8), C(0;-6)

Ta có ba điểm:
- Từ A(1;0): \( 0 = a(1)^2 + b(1) + c \)
- Từ B(2;8): \( 8 = a(2)^2 + b(2) + c \)
- Từ C(0;-6): \( -6 = a(0)^2 + b(0) + c \)

Điều này tạo ra hệ phương trình sau:
1. \( a + b + c = 0 \) \quad (1)
2. \( 4a + 2b + c = 8 \) \quad (2)
3. \( c = -6 \) \quad (3)

Thay (3) vào (1) và (2):
1. \( a + b - 6 = 0 \) ⟹ \( a + b = 6 \) ⟹ (4)
2. \( 4a + 2b - 6 = 8 \) ⟹ \( 4a + 2b = 14 \) ⟹ \( 2a + b = 7 \) ⟹ (5)

Giải hệ (4) và (5):
- Từ (4): \( b = 6 - a \)
- Thay vào (5): \( 2a + (6 - a) = 7 \) ⟹ \( 2a - a + 6 = 7 \) ⟹ \( a = 1 \)
- Thay \( a = 1 \) vào (4): \( 1 + b = 6 \) ⟹ \( b = 5 \)
- Từ (3): \( c = -6 \)

Vậy hàm số là:
\[
y = x^2 + 5x - 6
\]

### b. Hàm số đi qua điểm A(0;5) và có đỉnh I(3;-4)

Hàm số có dạng:
\[
y = a(x - 3)^2 - 4
\]

Điểm A(0;5) cho:
\[
5 = a(0 - 3)^2 - 4 \\
5 + 4 = 9a \\
9 = 9a \\
a = 1
\]

Vậy hàm số là:
\[
y = (x - 3)^2 - 4 = x^2 - 6x + 5
\]

### c. Hàm số đạt giá trị nhỏ nhất = 3 và đi qua các điểm (0;5) (3;13)

Giá trị nhỏ nhất của hàm bậc hai có dạng \( y = a(x - h)^2 + k \) với \( k = 3 \).

Hàm có dạng:
\[
y = a(x - h)^2 + 3
\]

Xuất phát từ điểm (0;5):
\[
5 = a(0 - h)^2 + 3 \\
2 = ah^2 \quad (1)
\]

Xuất phát từ điểm (3;13):
\[
13 = a(3 - h)^2 + 3 \\
10 = a(3 - h)^2 \quad (2)
\]

Từ (1) và (2):
- Từ (1): \( a = \frac{2}{h^2} \)
- Thay vào (2):
\[
10 = \frac{2}{h^2}(3 - h)^2 \\
10h^2 = 2(3 - h)^2 \\
5h^2 = (3 - h)^2 \\
5h^2 = 9 - 6h + h^2 \\
4h^2 + 6h - 9 = 0 \\
(2h + 3)^2 - 36 = 0 \\
(2h + 3 + 6)(2h + 3 - 6) = 0 \\
h = \frac{-3 + 6}{2} = \frac{3}{2} \quad \text{hoặc } h = \frac{-3 - 6}{2} = -\frac{9}{2}
\]

Thay \( h = \frac{3}{2} \) vào (1):
\[
a = \frac{2}{(\frac{3}{2})^2} \\
= \frac{2}{\frac{9}{4}} = \frac{8}{9}
\]

Vậy hàm số là:
\[
y = \frac{8}{9} \left( x - \frac{3}{2} \right)^2 + 3
\]

Hoặc có thể viết lại dạng tiêu chuẩn:
\[
y = \frac{8}{9}x^2 - 4x + \frac{47}{9}
\]

Hy vọng câu trả lời này hữu ích cho bạn!

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 10 mới nhất
Trắc nghiệm Toán học Lớp 10 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Đấu trường tri thức | Lazi Quiz Challenge +500k