Bài tập  /  Bài đang cần trả lời

Bài 36 trang 61 SGK Toán 9 Tập 1

1 trả lời
Hỏi chi tiết
403
0
0
Trần Bảo Ngọc
12/12/2017 00:49:51
Cho hai hàm số bậc nhất \(y = \left( {k + 1} \right)x + 3\) và \(y = \left( {3 - 2k} \right)x + 1\).
a) Với giá trị nào của k thì đồ thị của hai hàm số là hai đường thẳng song song với nhau?
b) Với giá trị nào của k thì đồ thị của hai hàm số là hai đường thẳng cắt nhau?
c) Hai đường thẳng nói trên có thể trùng nhau được không? Vì sao?
Giải:
Hàm số \(y = \left( {k + 1} \right)x + 3\) có các hệ số \(a = k + 1,\,\,b = 3\)
Hàm số \(y = \left( {3 - 2k} \right)x + 1\) có các hệ số \(a' = 3 - 2k,\,\,\,b' = 1\)
a) Hai đường thẳng \(y = \left( {k + 1} \right)x + 3\) và \(y = \left( {3 - 2k} \right)x + 1\) song song với nhau khi:
\(\left\{ \matrix{
k + 1 \ne 0 \hfill \cr 
3 - 2k \ne 0 \hfill \cr 
k + 1 = 3 - 2k \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
k \ne - 1 \hfill \cr 
k \ne {3 \over 2} \hfill \cr 
k = {2 \over 3} \hfill \cr} \right.\)
\( \Rightarrow k = {2 \over 3}\) (thỏa mãn điều kiện )
b) Hai đường thẳng \(y = \left( {k + 1} \right)x + 3\) và \(y = \left( {3 - 2k} \right)x + 1\) cắt nhau khi:
\(\left\{ \matrix{
k + 1 \ne 0 \hfill \cr 
3 - 2k \ne 0 \hfill \cr 
k + 1 \ne 3 - 2k \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
k \ne - 1 \hfill \cr 
k \ne {3 \over 2} \hfill \cr 
k \ne {2 \over 3} \hfill \cr} \right.\) 
c) Hai đường thẳng trên không trùng nhau vì chúng có tung độ gốc khác nhau (3 ≠ 1) 

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư