Bài tập  /  Bài đang cần trả lời

Bài 38 trang 62 SGK Toán 9 Tập 1

1 trả lời
Hỏi chi tiết
561
0
0
Phạm Minh Trí
12/12/2017 02:38:23
a) Vẽ đồ thị các hàm số sau trên cùng một mặt phẳng tọa độ:
y = 2x (1);
y = 0,5x (2);
y = -x + 6 (3)
b) Gọi các giao điểm của đường thẳng có phương trình (3) với hai đường thẳng có phương trình (1) và (2) theo thứ tự là A và B. Tìm tọa độ của hai điểm A và B.
c) Tính các góc của tam giác OAB.
Hướng dẫn câu c)
Tính OA, OB rồi chứng tỏ tam giác OAB là tam giác cân.
Tính \(\widehat {AOB} = \widehat {AOx} - \widehat {BOx}\) 
Hướng dẫn làm bài:
a) Đồ thị xem hình bên

b) Tìm tọa độ điểm A.
-x + 6 = 2x ⇔ 6 = 2x + x ⇔ x = 3
x = 2 thì y = -2 + 6 = 4 nên A(2; 4)
Tìm tọa độ điểm B.
-x + 6 = 0,5x ⇔ 6 = 0,5x + x ⇔ x = 4
Với x = 4 thì y = -4 + 6 = 2 nên B(4;2)
c)  
\(\eqalign{
& O{A^2} = {2^2} + {4^2} = 20 \Rightarrow OA = \sqrt {20} \cr
& O{B^2} = {4^2} + {2^2} = 20 \Rightarrow OB = \sqrt {20} \cr
& OA = OB\left( { = \sqrt {20} } \right) \cr} \)
⇒ ∆OAB cân tại O
Ta có \(tg\widehat {BOx} = {2 \over 4} = {1 \over 2} \Rightarrow \widehat {BOx} \approx {26^0}34'\)
và  \(tg\widehat {AOx} = {4 \over 2} = 2 \Rightarrow \widehat {AOx} \approx {63^0}26'\)
Do đó \(\widehat {AOB} = \widehat {AOx} - \widehat {BOx} = {36^0}52'\)
Nên \(\widehat {OAB} = \widehat {OBA} \approx {{{{180}^0} - {{36}^0}52'} \over 2} = {71^0}34'\)

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư