Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 1 (trang 45 SGK Giải tích 12): Phát biểu các điều kiện đồng biến và nghịch biến của hàm số. Tìm các khoảng đơn điệu của hàm số
y = -x3 + 2x2 - x - 7;
Lời giải:
- Điều kiện đồng biến, nghịch biến của hàm số:
Cho hàm số y = f(x) xác định trên K, hàm số f(x):
+ Đồng biến (tăng) trên K nếu ∀ x1, x2 ∈ K: x1 < x2 => f(x1) < f(x2).
+ Nghịch biến (giảm) trên K ∀ x1, x2 ∈ K: x1 < x2 => f(x1) > f(x2)
- Xét hàm số y = -x3 + 2x2 - x - 7, ta có:
D = R
y' = -3x2 + 4x - 1
y' = 0 => x = 1 ; x = 1/3
y' > 0 với x ∈ (1/3; 1) và y' < 0 với x ∈ (-∞; 1/3) ∪ (1; +∞)
Vậy hàm số đồng biến trên (1/3; 1) và nghịch biến trên (-∞; 1/3) ∪ (1; +∞).
Lưu ý: Bạn nên kẻ bảng biến thiên để thấy sự đơn điệu rõ ràng hơn.
- Xét hàm số
Ta có: D = R \ {1}
=> Hàm số luôn nghịch biến trên từng khoảng (-∞; 1) và (1; +-∞)
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |