Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 2 (trang 33 SGK Hình học 11): Cho hình chữ nhật ABCD, AC và BD cắt nhau tại I. Gọi H, K, L, J lần lượt là trung điểm của AD, BC, KC và IC. Chứng minh rằng hai hình thang JLKI và IHDC đồng dạng với nhau.
Lời giải:
Trước hết thực hiện phép đối xứng tâm I, ta có:
C → A, D → B, H → K.
Hình thanh IHDC → hình thang IKBA.
Tiếp theo thực hiện phép vị tự tâm C, tỉ số k = 1/2 , ta có:
A → I, I → J, B → K, K → L
Hình thang IKBA → hình thang JLKI.
Vậy nếu thực hiện liên tiếp phép đối xứng ĐI và phép vị tự V(C;1/2) thì hình thang IHDC biến thành hình thang JLKI.
Suy ra hai hình thang IHDC và JLKI đồng dạng với nhau.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |