Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Bài 2 (trang 34 sgk Hình học 11 nâng cao): Chứng minh rằng nếu mỗi hình nào đó có hai trục đối xứng vuông góc với nhau thì hình đó có tâm đối xứng
Lời giải:
Giả sử hình H có hai trục đối xứng d và d’ vuông góc với nhau. Gọi O là giao điểm của hai trục đối xứng đó. Lấy M là điểm bất kì thuộc hình H1,M1 là điểm đối xứng với M qua d, M’ là điểm đối xứng với M1 qua d'.Vì d và d’ đều là trục đối xứng của hình H nên M1 và M' đều thuộc H .
Gọi I là trung điểm của MM1,J là trung điểm của M1M' ta có:
Vậy phép đối xứng tâm O biến điểm M thuộc hình H thành điểm M’ thuộc H, suy ra H có tâm đối xứng là O.
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |