Bài tập  /  Bài đang cần trả lời

Cho các số thực không âm a, b, c thay đổi thỏa mãn a^2+b^2+c^2=1

Cho các số thực không âm a, b, c thay đổi thỏa mãn a^2+b^2+c^2=1 . Tìm GTNN của biểu thức Q=√a+b+√b+c+√c+a
1 trả lời
Hỏi chi tiết
57
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để tìm giá trị nhỏ nhất của biểu thức Q, ta sử dụng bất đẳng thức Cauchy-Schwarz.

Theo bất đẳng thức Cauchy-Schwarz, ta có:
(a^2 + b^2 + c^2)(1 + 1 + 1) ≥ (a + b + c)^2

Vì a^2 + b^2 + c^2 = 1, nên ta có:
3(a + b + c)^2 ≥ 1

Từ đó, ta suy ra:
a + b + c ≥ 1/√3

Do đó, giá trị nhỏ nhất của biểu thức Q là 3/√3 = √3.

Vậy, giá trị nhỏ nhất của biểu thức Q là √3.
2
0
Kim Mai
16/12/2023 20:24:01
+5đ tặng

\(P^2=a+b+c+a^2+b^2+c^2+2\sqrt{\left(a+b^2\right)\left(b+c^2\right)}+2\sqrt{\left(b+c^2\right)\left(c+a^2\right)}+2\sqrt{\left(a+b^2\right)\left(c+a^2\right)}.\)

Theo bđt Bunhiacopski ta có

\(2\sqrt{\left(a+b^2\right)\left(b+c^2\right)}\ge2\sqrt{b^3}\)(vì \(a,c\ge0\))

Tương tự \(2\sqrt{\left(b+c^2\right)\left(c+a^2\right)}\ge2\sqrt{c^3}\)

                \(2\sqrt{\left(c+a^2\right)\left(a+b^2\right)}\ge2\sqrt{a^3}\)

\(\Rightarrow P^2\ge a+b+c+a^2+b^2+c^2+2\sqrt{a^3}+2\sqrt{b^3}+2\sqrt{c^3}\)

Theo gt : \(\hept{\begin{cases}a,b,c\ge0\\a^2+b^2+c^2=1\end{cases}\Rightarrow0\le a,b,c\le1}\)

\(\Rightarrow\hept{\begin{cases}a\ge a^2,b\ge b^2,c\ge c^2\\a^3\ge a^4,b^3\ge b^4,c^3\ge c^4\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a+b+c\ge a^2+b^2+c^2=1\\2\sqrt{a^3}+2\sqrt{b^3}+2\sqrt{c^3}\ge2\left(a^2+b^2+c^2\right)=2\end{cases}}\)

\(\Rightarrow P^2\ge1+1+2=4\)\(\Rightarrow P\ge2\)

Dấu "=" xảy ra khi a=b=0,c=1 và các hoán vị của nó

Mở khóa để xem toàn bộ nội dung trả lời

(?)
Bạn đã đạt đến giới hạn của mình. Bằng cách Đăng ký tài khoản, bạn có thể xem toàn bộ nội dung trả lời
Cải thiện điểm số của bạn bằng cách đăng ký tài khoản Lazi.
Xem toàn bộ các câu trả lời, chat trực tiếp 1:1 với đội ngũ Gia sư Lazi bằng cách Đăng nhập tài khoản ngay bây giờ
Tôi đã có tài khoản? Đăng nhập

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 9 mới nhất
Trắc nghiệm Toán học Lớp 9 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư