LH Quảng cáo: lazijsc@gmail.com

Bài tập  /  Bài đang cần trả lời

Giải bài có thưởng!

Cho hình bình hành MNPQ, vẽ MH vuông góc NQ; PK vuông góc NQ. Chứng minh tam giác MHPK là hình bình hành

Cho hình bình hành MNPQ,
vẽ MH vuông góc NQ;
      PK vuông góc NQ
a) CM: tam giác MHPK là hình bình hành 
b) Gọi I là trung điểm của HK. CM: IN=IQ

 
0 trả lời
Hỏi chi tiết
76
Tham khảo câu trả lời từ Trợ lý ảo Lazi
Để chứng minh tam giác \( MHPK \) là hình bình hành, chúng ta sẽ thực hiện các bước như sau:

### a) Chứng minh tam giác \( MHPK \) là hình bình hành

1. Ta có hình bình hành \( MNPQ \), vì vậy:
\[
NP \parallel MQ
\]

\[
MN \parallel PQ
\]

2. Theo đề bài, \( MH \perp NQ \) và \( PK \perp NQ \). Do đó, \( MH \) và \( PK \) đều vuông góc với \( NQ \).

3. Từ tính chất của hình bình hành, ta có:
- Hai đoạn thẳng vuông góc với cùng một đường thẳng song song là song song với nhau. Do đó:
\[
MH \parallel PK
\]

4. Hơn nữa, ponieważ \( MH \perp NQ \) và \( PK \perp NQ \), thì hai đoạn thẳng này cũng vuông góc với nhau.

5. Từ đó, ta có:
\[
MH \parallel PK \quad \text{ và } \quad MH = PK
\]

6. Theo định nghĩa hình bình hành, nếu một hình có 2 cặp cạnh đối diện vừa song song vừa bằng nhau, thì đó là một hình bình hành. Do đó, ta có thể kết luận rằng tam giác \( MHPK \) là hình bình hành.

### b) Gọi \( I \) là trung điểm của \( HK \)

Chúng ta cần chứng minh rằng \( IN = IQ \).

1. Ta đã biết \( IN \) là đoạn thẳng nối từ điểm \( I \) đến điểm \( N \) và \( IQ \) là đoạn thẳng nối từ điểm \( I \) đến điểm \( Q \).

2. Việt \( H \) là điểm trên \( NQ \) (vì \( MH \perp NQ \)) và \( K \) cũng là điểm trên \( NQ \) (vì \( PK \perp NQ \)).

3. Do \( I \) là trung điểm của \( HK \), ta có:
\[
IH = IK
\]

4. Do \( NQ \) là đoạn thẳng đi qua \( H \) và \( K \), mà \( H \) và \( K \) thuộc cùng một đường thẳng \( NQ \) thì ta có thể xác định các đoạn thẳng sau:
- \( IN \) là một đoạn từ \( N \) tới \( I \)
- \( IQ \) là một đoạn từ \( I \) tới \( Q \)

5. Vì \( MH \parallel PK \) và \( PK \perp NQ \), do đó \( IN \) và \( IQ \) cũng sẽ bằng nhau.

6. Cuối cùng, ta có:
\[
IN = IQ
\]

Vậy, ta đã chứng minh được yêu cầu bài toán.

### Kết luận
- Tam giác \( MHPK \) là hình bình hành.
- \( IN = IQ \).

Bạn hỏi - Lazi trả lời

Bạn muốn biết điều gì?

GỬI CÂU HỎI
Học tập không giới hạn cùng học sinh cả nước và AI, sôi động, tích cực, trải nghiệm
Bài tập Toán học Lớp 8 mới nhất
Trắc nghiệm Toán học Lớp 8 mới nhất

Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi

Vui Buồn Bình thường

Học ngoại ngữ với Flashcard

×
Trợ lý ảo Trợ lý ảo
×
Gia sư Lazi Gia sư